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Using Neural Networks to Predict  Microspatial 
Economic Growth†

By Arman Khachiyan, Anthony Thomas, Huye Zhou, Gordon Hanson, 
Alex Cloninger, Tajana Rosing, and Amit K. Khandelwal*

We apply deep learning to daytime satellite imagery to predict changes 
in income and population at high spatial resolution in US data. For 
grid cells with lateral dimensions of 1.2 km and 2.4 km (where the 
average US county has dimension of 51.9 km), our model predictions 
achieve   R   2   values of 0.85 to 0.91 in levels, which far exceed the accu-
racy of existing models, and 0.32 to 0.46 in decadal changes, which 
have no counterpart in the literature and are  3–4 times larger than for 
commonly used nighttime lights. Our network has wide application for 
analyzing localized shocks. (JEL C45, R11, R23)

Spatial economic analysis evaluates how localized shocks—for example, infra-
structure projects (Redding and  Turner 2015), factory openings (Greenstone, 
Hornbeck, and Moretti 2010), and natural disasters (Boustan et al. 2020)—affect 
the geographic distribution of economic activity. Standard approaches match admin-
istrative or survey data to the geospatial structure of these shocks. Because data tend 
to be released infrequently (e.g., decadally for censuses) and for relatively coarse 
spatial units (e.g., counties or metro areas), this method is suitable for assessing 
 long-run economic impacts at a broad spatial scale (e.g., Faber 2014;  Baum-Snow 
et al. 2017). By contrast, assessing the impact of shocks at the neighborhood level 
across all cities nationally would be infeasible with conventional data in most 
countries.

Satellite imagery offers a path forward. Recent work leverages nighttime light 
intensity to study regional economies where conventional data are sparse (see, e.g., 
Donaldson and Storeygard 2016). Although night lights can detect changes in eco-
nomic activity across cities, states, and countries, they are problematic at smaller 
spatial scales. High luminosity in city centers may saturate satellite sensors,  leading 
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to top coding, while surface reflectance may cause light to bleed across space, 
 making urban footprints appear artificially large. Aggregating imagery addresses 
these problems but dampens spatial variation. To increase granularity, recent work 
in remote sensing and computer science uses convolutional neural networks (CNNs) 
to predict outcomes from  multispectral daytime satellite imagery at high spatial 
resolutions. This research detects  cross-sectional variation in spending and wealth 
for villages in Africa (Jean et al. 2016) and poverty rates across a diverse sample of 
cities (Babenko et al. 2017; Piaggesi et al. 2019). In related work on 1 km grid cells 
in the United States, Rolf et al. (2021) develop a “ task-agnostic” learning approach 
to predict a broad set of localized outcomes.

This paper makes two advances over the existing literature. First, we implement a 
CNN to predict changes in local economic activity from changes in  high-resolution 
daytime satellite imagery. We achieve high predictive accuracy in the cross section, 
as others have done, and in predicting localized outcomes in the time series, which 
has not been the focus of previous work. Second, we demonstrate that our approach 
far outperforms nighttime lights at predicting changes at fine spatial scales.1

For inputs in model training, we use  multispectral imagery from Landsat; for 
labels, we use household income and population for census blocks in the US Census 
and American Community Survey (ACS). Working in the  data-rich US setting, we 
are able to train a CNN from scratch using hundreds of thousands of images and 
training labels. Matching census data with Landsat to construct square images with 
side lengths of 1.2 km or 2.4 km, we predict levels and changes in income and pop-
ulation.2 In the test set, model predictions achieve   R   2   values of greater than 0.85 in 
levels and 0.32 in time differences, which compare to   R   2   values for predictions in 
levels of 0.42 for income and 0.75 for population in Rolf et al. (2021). There are no 
estimates in the literature to benchmark our predictions of changes in local income 
and population.

Methodologically, we advance the scale and specificity at which machine learn-
ing is used to predict local changes in economic activity. Rather than beginning 
with image features generated by existing models for prediction—which is the stan-
dard practice of transfer learning—we train and tune CNN models for all urbanized 
pixels in the contiguous United States from the ground up. This computationally 
demanding approach allows us to detect the  low-level image features (i.e., shapes, 
shades, edges, clusters) that are informative for predicting income and population 
beyond those that have proven useful in other image tasks (Rosenstein et al. 2005).

Our approach complements Rolf et al. (2021), who aim for generality rather than 
specificity in predicting outcomes from satellite imagery. They use a layer of ran-
domly initialized filters—based on sampling a small patch from the imagery—to 
extract features from the raw images. These features are then used to predict out-
comes of interest. Their process requires little training, is undemanding computa-
tionally, and is suitable to predicting many outcomes but may not be well tuned to 

1 Given their wide use in spatial analysis, night lights are a natural benchmark for comparison. See, for exam-
ple, Chen and Nordhaus (2011); Henderson, Storeygard, and Weil (2012); Gennaioli et al. (2013); Michalopoulos 
and  Papaioannou (2014); Storeygard (2016); Bruederle and  Hodler (2018); Henderson et  al. (2018); Hjort 
and Poulsen (2019); and Jedwab and Storeygard (2022). In the policy domain, the World Bank has produced a 
quarterly dataset, Light Every Night, which records localized nighttime light intensity from 1992 to 2020.

2 For comparison, in 2010 US census blocks had an average size of  0.9 km × 0.9 km .
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specific prediction tasks. Our approach, while highly intensive in training and com-
putation, is bespoke for predicting local changes in income and population.

Our model and code can be used to impute  high-frequency outcomes in between 
the periodic data drawn from  large-scale surveys, to train models with imagery 
where census data exist but are sparse, and to predict levels and changes in income 
and population for spatially disaggregated units where census data are unavailable 
entirely.3 We conclude with a discussion of potential applications.

I. Data and Methods

A. Imagery and Label Data

For satellite imagery, we use daytime surface reflectance detected by the US 
Geological Survey (USGS) Landsat 7 satellite, which has seven spectral bands 
(three visible, two  near-infrared, one thermal, and one  mid-infrared), covers the 
earth’s surface biweekly, and has a spatial resolution of 30 m. Using Google Earth 
Engine (Gorelick et al. 2017), we construct annual composites of surface reflectance 
for the  May–August median of  cloud-free images each year.4

To avoid populating the data with a large number of images covering uninhabited 
areas, we limit the sample to Landsat pixels corresponding to urbanized US census 
block groups.5 We first rank block groups according to population density in 2000 
and identify those in descending rank order that collectively comprised 85 percent 
of the continental US population in that year. We then draw a  1 mile buffer around 
these block groups and include all images within the buffer in our sample. Following 
this procedure, our data cover 93 percent of the continental US population in 2000. 
We construct individual images from Landsat imagery as squares. We test two image 
sizes, one with 2.4 km sides and one with 1.2 km sides (see Figure 1).6 Smaller 
images, which increase the spatial resolution of the ultimate predictions, may be 
more useful in some applications but may also be more challenging to model as they 
have fewer pixels, and therefore less information available, per image.

Labels for the analysis are constructed from the US Census for 2000, 2010, and 
2020 and the ACS  five-year samples for  2005–2009,  2008–2012, and  2015–2019, 
all extracted from Manson et al. (2020). From each sample, we use population by 
census block and total personal income, for residents ages 15 years and older, by 
census block group.7 Because income data are only published at the block group 
level, we interpolate income from block groups to blocks according to the  population 

3 Our code, model, and output are available at https://github.com/thomas9t/spatial-econ-cnn.git. This reposi-
tory includes scripts and computed weights that can be used to augment or extend our modeling approach. It also 
includes data and instructions for direct applications using our generated income and population measures.

4 Using summer months averts irregularities due to persistent clouds or snow.
5 Census blocks (600 to 3,000 residents) are the smallest geographic unit in the census; block groups are the next 

smallest unit. In 2000 there were 211,267 block groups, with a mean of 39 blocks per group. We exclude census 
blocks in which more than 10 percent of the population was living in group quarters in 2000.

6 The 2.4 km and 1.2 km images have pixel dimensions of  80 × 80  (6,400 pixels) and  40 × 40  (1,600 pixels).
7 Personal income includes wages and salaries, tips and bonuses, proprietor’s income, government cash trans-

fers, interest and rental income, and retirement benefits.  In-kind government transfers, capital gains, and revenue 
from property sales are not included (Manson et al. 2020). All values are in 2012 US dollars.

https://github.com/thomas9t/spatial-econ-cnn.git
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 distribution across blocks within groups.8 We further interpolate income and pop-
ulation from census blocks to images based on the geographic overlap between the 
two.

B. Convolutional Neural Networks for Spatial Economic Analysis

Although images are an  information-rich medium, their unstructured and 
 high-dimensional nature make them difficult to use with conventional learning algo-
rithms, such as lasso regression. The ability of CNNs to learn structure from data 
has revolutionized image processing (LeCun, Bengio, and Hinton 2015). A CNN 
consists of a sequence of layers, each of which implements a parameterized nonlin-
ear transformation of its inputs. The inputs to the first layer are raw images—in our 
case, seven-dimensional images from Landsat. The output of the first layer is used 
as input by the second layer and so on. The transformation implemented by each 
layer is typically either a convolution or pooling operation (Goodfellow, Bengio, 
and  Courville 2016), which can be visualized by sliding a rectangular window 
(e.g.,  3 × 3 × 7 ) over the input image. At each position, an inner product is per-
formed, which aggregates the pixel values in the window into a single number. The 
output of either a convolution or a pooling operation is another image in which the 
pixels are these aggregated values.9 After a sequence of convolutional and pooling 

8 Because block population is unavailable in the ACS data, we use the 2010 population to interpolate 2007 
income from block groups to blocks and similarly use the 2020 population to interpolate 2017 income.

9 In a convolutional layer, the window contains coefficients used to compute a weighted sum of the pixel values 
within each window via convolutional filtering. The CNN learns these weights to identify a feature of the image. 
By applying a sequence of transformations that learn features at increasingly coarse spatial scale, CNNs are able to 
represent complex spatial relationships between pixels in an image. In a pooling layer, we condense all pixel values 
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Figure 1. Geographic Area of Census and Image Units

Notes: This figure shows the geographic area covered by various census geographic units alongside our constructed 
images. Horizontal black dashes display the median area for each geographic unit; gray vertical lines show the 
range from the tenth percentile of area to the ninetieth percentile of area for each geography. Note that the  y-axis 
is a  log-scale of area.
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layers, the transformed image passes through a  fully connected layer, which is a 
nonlinear regression that maps the image features extracted by the convolutional and 
pooling layers to a predicted outcome. The parameters of the model are fit using a 
 gradient-based optimization algorithm known as stochastic gradient descent, which 
minimizes the MSE over labeled training examples.

In our context, a CNN extracts economic information that is latent in spectral 
data. Asphalt, cement, gravel, soil, water, vegetation, and other materials vary in 
their reflectance intensity across the light spectrum (e.g., De Fries et al. 1998). The 
presence of these materials varies enormously within an urban area: more vegetation 
and loose soil in green spaces; more asphalt and cement around motorways; more 
steel and wood, together with concrete, in houses and buildings (Zha, Gao, and Ni 
2003). The shapes of these materials exhibit similarly wide variation: irregular edges 
in green spaces; intermittent grids of grass and roofing material in suburbs; larger 
rectangular clusters in apartment complexes and shopping malls; and compact, 
interconnected grids in urban centers (Ural, Hussain, and Shan 2011; Pesaresi et al. 
2016). It is this complexity that makes a neural network powerful—the network 
learns the mapping of materials and shapes to the level of economic activity and 
changes in materials and shapes to changes in economic activity. As an empirical 
regularity, the features learned by the network are often organized into a hierarchy 
of complexity (Zeiler and Fergus 2014), in which early layers learn to identify sim-
ple features, such as edges or basic shapes, and subsequent layers learn to compose 
these simple features into complex objects, such as office buildings, industrial parks, 
and suburban developments.

The predicted values that our analysis generates will be subject to error. In regres-
sion analysis, measurement error in the outcome variable does not generate bias in 
estimating treatment effects if this error is uncorrelated with the treatment being 
studied.10 Because treatments may be correlated with initial levels of economic 
development, we wish to eliminate any correlation between prediction errors and 
initial conditions. To do so, we include controls for local economic characteristics in 
the initial time period (as measured in census data) in our CNN models.11 An added 
virtue of this approach is that it may improve model accuracy, thereby reducing 
the scope for prediction errors to contaminate analysis that uses our predictions as 
outcome variables in the first place. Implementing our approach, we find minimal 
correlations between prediction errors and initial conditions in our data.12

within the window to a single number—typically the maximum pixel value within the window. Pooling differs from 
convolution primarily in that it does not require any learned weights. Pooling serves to reduce the size of the image, 
which lowers the computational burden of subsequent layers and helps make the features detected by convolutions 
robust to small spatial transformations.

10 For example, if the assigned treatment (a new highway) had a strong positive correlation with the measure-
ment error in the outcome (larger positive deviations between actual and predicted population or income near the 
highway), this would lead to an overestimate of the true treatment effect.

11 A full list of variables included can be found in online Appendix Table 1.
12 The largest correlation coefficient for the income differences model in the test set is 0.057 (for employment in 

hospitality services), and the median correlation is 0.002. See online Appendix Table 1 for details.
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C. Training, Tuning, and Testing Procedure

CNNs contain a large number of tunable parameters—known as hyper-
parameters—which control the model architecture and optimization process 
(e.g., the dimension of convolution filters, number of channels produced by 
each convolution layer, strength of regularization on weights, and step size 
used by the optimization algorithm). CNNs are prone to overfitting, in which 
a model generates accurate predictions on the data used to fit parameters but 
fails to generalize on  out-of-sample data. To obtain accurate estimates of the 
model’s  out-of-sample performance and to determine the best values for hyper-
parameters, we follow standard practice in empirical machine learning by par-
titioning our data into three disjoint subsets for training, validation, and testing 
(Hastie, Tibshirani, and Friedman 2001). The training set is used to fit model 
parameters, and the validation set is used to estimate the  out-of-sample error 
for a given set of hyperparameters. The final model is obtained by selecting the 
hyperparameters that yield the lowest prediction error in the validation set. The 
test set is used to obtain an estimate of  out-of-sample error for the final model. 
Ideally, we would repeat this partitioning many times to obtain an estimate of 
the distribution of  out-of-sample error. However, this is infeasible at our data  
scale.

Models are trained to minimize the MSE of the prediction using the Adam 
optimizer (Kingma and Ba 2017). When training models in levels, we pool train-
ing data for the years 2000 and 2010 and train a single model to predict outcomes 
in this combined sample. An alternative approach would be to specialize models 
in levels to a particular year. However, this method led to greater  overfitting, 
where training on pooled data resulted in only modest losses in accuracy. We tune 
hyperparameters for the learning rate (step size and decay rate) and strength of 
 L2-regularization on weights. The training images are randomly augmented to 
prevent overfitting (cropping, flipping, and zooming). We stop the optimization 
process after 200 epochs or if the   R   2   on the validation set fails to increase for 
50 epochs. In the latter case we retain the weights that maximize the validation   
R   2  . Further details are in the online Appendix.

To obtain reliable estimates of  out-of-sample performance, the training, valida-
tion, and test sets must be disjoint. To construct these subsets, we partition the full 
set of images meeting our inclusion criteria into contiguous urban areas. We ran-
domize selection into training, validation, and test sets at the level of the urban 
area, rather than the level of the image. Maintaining a disjoint split of the images 
removes the possibility of data leakage between the training and testing sets (which 
may result if we allowed images from the two sets to be adjoining). This procedure 
leads to a total of 4,710 urban regions, which are each randomly assigned to either 
the train (roughly 50 percent), validation (roughly 20 percent), or test (roughly 
30 percent) sets. An image receives the subset designation of the urban region it 
is contained by, where we discard images located on borders between urban areas 
(e.g., images on the border between Minneapolis and Saint Paul, which are separate 
urban areas). Online Appendix Figure 3 shows the distribution of images into each 
of these  subgroups.
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II. Results

A. CNN Model Performance

Baseline Results.—Here, we present our main results on the predictive power of 
CNNs. Table 1, panel A reports   R   2   values for model accuracy, again in levels (2000 
and 2010) and time differences (2000 to 2010) for 2.4 km images; Table 1, panel 
B repeats the results for 1.2 km images. Our smaller images are close in dimension 
to the 1 km images that Piaggesi et al. (2019) and Rolf et al. (2021) use in their 
 machine-learning approaches to model, respectively, poverty levels and levels of 
average income and population density in US data. We report performance in the 
training, validation, and test sets, with and without incorporating initial conditions 
in model training.13 For models in levels, we report results for a single model trained 
to predict both years; performance in each year separately is very similar (see online 
Appendix Table 5).

Beginning with larger images in Table 1, panel A, we first consider model per-
formance for outcomes in levels. For income and population, and with initial condi-
tions, the   R   2   in the test set are 0.90 and 0.91, respectively. Without initial conditions, 
performance deteriorates moderately, with the   R   2   falling by 0.05 to 0.07. Comparing 
these results to those for smaller image sizes in Table 1, panel B, the   R   2   for income 
and population are 0.85 and 0.86 with initial conditions and 0.09 to 0.11 lower with-
out them. The weaker performance of smaller relative to larger images is expected. 
For smaller images, the network must form predictions based on a smaller number 
of underlying pixels, which tends to undermine accuracy.

Turning to our predictions for changes over  2000–2012, for 2.4 km images, the   
R   2   for income and population growth rates in the test set are 0.40 and 0.46, respec-
tively, with initial conditions and 0.37 to 0.42 without them. For 1.2 km images, 
model performance is again somewhat weaker. The   R   2   is 0.32 to 0.36 with initial 
conditions and 0.27 and 0.30 without them.

Comparing our results for 1.2 km images to those for 1 km grid cells in Rolf et al. 
(2021), we achieve higher performance for both population density (our   R   2   of 0.86 
versus theirs of 0.72) and income (our   R   2   of 0.85 versus theirs of 0.42). We note 
that whereas our model is trained from scratch for the express purpose of predicting 
income and population, their model is constructed for the general purpose of pre-
dicting many possible outcomes and therefore may sacrifice accuracy for any spe-
cific quantity. Because we are unaware of any prior work that uses CNNs to predict 
changes in income or population at spatial resolutions similar to our image sizes, we 
have no benchmark for comparison in the literature for these results.14

13 The complete set of initial conditions, all measured for the year 2000, are at the county level, log popula-
tion, log personal income, and the shares of employment in business services,  nonbusiness services, and industrial 
production; and at the census block level, population shares for individuals who are female, ages 25–54, Black, 
 non-Hispanic white, Hispanic, living in group quarters, and employment shares for  two-digit manufacturing indus-
tries, business services, and  nonbusiness services (US Census Bureau 2020).

14 In online Appendix Table 2, we report results for log income per capita. In levels for 2000 and 2010 and with 
initial conditions, we achieve   R   2   in the test set of 0.65 for 2.4 km imagery and 0.61 for 1.2 km imagery; in changes 
for  2000–2010 and with initial conditions, we achieve   R   2   in the test set of 0.07 for both 2.4 km and 1.2 km imagery. 
Differencing population from income, which removes much of the systematic variation in economic activity from 
the data, appears to complicate extracting information from satellite imagery.
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To evaluate overfitting, we compare predictive accuracy across training, valida-
tion, and test sets. Focusing on the  time difference models and on results in valida-
tion versus training sets, the   R   2   for income growth in 2.4 km images falls minimally 
by 0.02 from the validation to the test set with initial conditions and by 0.03 without 
initial conditions; the change in   R   2   is slightly larger for population growth. For 
1.2 km images, the   R   2   either rises or changes minimally from the validation to the 
test set, both for income and population and with or without initial conditions. With 
 cross-validation, overfitting in our model training does not appear to be manifest.

Model Prediction Errors.—To evaluate prediction errors in our model, Figure 2 
shows scatterplots of  model-predicted values and actual values for log income and 
population in levels and time differences. In the models for levels, the data are 
tightly packed around the  45-degree line, indicating that the model accurately cap-
tures log income and population across the entire distributions of each. The results 
for growth rates in the second row show that the prediction of differences is more 
challenging. The model captures much of the variation for images in which values 
are growing but tends to  overpredict growth in images for which values are flat or 
declining, especially for income. The asymmetry in errors for positive and negative 
growth rates—for income, in particular—may be a result of the slow depreciation 
of physical capital. Whereas in expanding regions income growth may lead directly 
to new construction, in declining regions income loss may result in the change or 
removal of structures over longer time horizons.

To see whether our prediction errors are associated with initial economic con-
ditions, we compute the correlation of our prediction errors with initial industry 

Table 1—  R   2   Values for Baseline Models of Large and Small Images

2000 and 2010 levels 2000 to 2010 difference

Train Valid Test Train Valid Test

Panel A. National 2.4 km imagery
Income
With initial conditions 0.9254 0.8934 0.9018 0.4863 0.4126 0.3962
Without initial conditions 0.8625 0.8289 0.8374 0.4951 0.3960 0.3702

Population
With initial conditions 0.9611 0.9029 0.9132 0.5410 0.4839 0.4573
Without initial conditions 0.9187 0.8636 0.8684 0.7004 0.4496 0.4202

Panel B. National 1.2 km imagery
Income
With initial conditions 0.8957 0.8620 0.8543 0.3819 0.3061 0.3216
Without initial conditions 0.7969 0.7597 0.7494 0.2959 0.2609 0.2690

Population
With initial conditions 0.9101 0.8716 0.8600 0.4217 0.3401 0.3559
Without initial conditions 0.7841 0.7612 0.7492 0.3924 0.3051 0.3036

Notes: The table shows   R   2   values computed on each subset of the images with 2.4 km and 1.2 km sides. The total 
sample size of spatially unique images in training, validation, and test subsets is 112,932 for larger images and 
320,880 for smaller images. Income measures the log of total personal income, while population is the log of total 
population. 2000 and 2010 levels represent a model predicting levels for images in the two years together, while 
the difference columns show the result predicting the change from 2000 to 2010. Initial conditions included in the 
model are gender and racial composition, employment shares, and county-level population and income, all mea-
sured in 2000. The results show high accuracy in predicting both levels and differences in income and population; 
there is not strong evidence of  overfitting in the training set. Model fit is consistently lower on the sample of smaller 
images; hence, we prioritize the sample of 2.4 km imagery as our baseline analysis sample.
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employment shares and demographic characteristics. These correlations are all below 
0.1 and mostly well below 0.02, as seen in online Appendix Table 1. Estimating a 
regression of prediction errors on fixed effects for each urban area in the sample, the 
fixed effects absorb 11 percent or less of the variation in the errors, as seen in the last 
row of online Appendix Table 1. Online Appendix Figures 4A and 4B further show 
no systematic variation in prediction accuracy across geographic regions. In all, 
there appears to be little covariation between prediction errors and initial economic 
conditions in our sample.15

B. Comparison with Night Light Intensity

Given the growing use of night lights to detect GDP, as discussed above, we next 
compare our CNN performance to how well night lights predict levels and changes 
in economic activity. In Figure 1, we regress log income or log population on log 
night light intensity, first in levels for the years 2000 and 2010 pooled in a single 
regression, and then in changes over the 2000–2010 time period. The geographies 

15 In the online Appendix, we follow recent literature on interpreting neural network predictions by evaluating 
saliency maps, which indicate which pixels in an image most influence network prediction.
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Figure 2. Model Predictions against Actual Values

Notes: Levels models include data from both 2000 and 2010. Extreme outliers are omitted from this figure to allow 
visualization of the central tendency in the data.
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studied range from US states to census blocks and include our 1.2 km and 2.4 km 
images. To normalize the size of spatial units, we express all values per  k m   2  .

Figure 3 summarizes the results by presenting the   R   2   values for each OLS regres-
sion. In the regressions in levels for larger geographies, night lights are a strong 
predictor of economic activity, consistent with previous research (Gennaioli et al. 
2013; Donaldson and Storeygard 2016). For income levels in 2000 and 2010, where 
results for population are very similar,   R   2   levels are stable across larger spatial units, 
at 0.67 for states, 0.66 for commuting zones, and 0.71 for counties. Jumping from 
counties to our 2.4 km images, the   R   2   drops to 0.57 and drops further to 0.50 for our 
1.2 km images. Even at roughly the neighborhood level—the 1.2 km images—night 
lights are strongly positively correlated with the level of economic activity.

Yet, our CNN trained on daylight imagery substantially outperforms night lights 
in  cross-sectional data. Referring to our baseline CNN results in Table 1, the CNN 
trained on daylight satellite imagery with initial conditions yields an   R   2   for log 
income that is 0.33 higher for 2.4 km images (0.90 versus 0.57) and 0.35 higher for 
1.2 km images (0.85 versus 0.50); improved accuracy for log population is similar.

The contrast between night lights and our CNN model is even greater when pre-
dicting changes in income or population. For  2000–2010 income changes—where 
results for population are again similar—  R   2   values are 0.10 for night lights using 
2.4 km images, compared to 0.40 in our CNN with initial conditions (or 0.37 without 
them), and 0.06 for night lights using 1.2 km images, compared to 0.32 in our CNN 
with initial conditions (or 0.27 without them).16 At the neighborhood  dimension of 

16 Consistent with previous literature, we find that night lights have sizable predictive power for  long-run 
income changes in larger geographies, achieving   R   2   values of 0.45 for states and 0.25 for counties.
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Figure 3. Night Light Predictive Accuracy by Geography

Notes: This figure shows the linear fit of log income and log population on log night lights for given geographic 
units, where measures are in values per  k m   2  . Night light intensity is a spatial sum of  DMSP-OLS average visible 
light in both 2000 and 2010. The regression for each geography is conducted with population weights. Results show 
that night lights are a powerful predictor of population and income in large geographies, but their effectiveness in 
smaller geographies is limited.
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our 1.2 km images, changes in night lights have weak predictive power for changes 
in economic activity.17

C. Robustness Exercises

We examine the robustness of our results to changes in the satellite imagery and 
 machine-learning methods used in the analysis.

Performance with RGB Only.—We consider the effect of limiting the Landsat 
imagery used for training to the visible spectrum (i.e., the red, green, and blue 
(RGB) channels). The  non-RGB bands in our imagery more than double the size 
of the data and therefore significantly increase training complexity. It is therefore 
useful to examine whether the added modeling complexity of using  non-RGB data 
is justified.

Online Appendix Table 3 compares test accuracy on models trained with RGB 
bands alone and those trained with all seven Landsat bands. For levels models with 
initial conditions, we find a modest benefit of adding the four  non-RGB bands: the   
R   2   rises by 0.04 for both log income and log population. The gain is larger for 
difference models: including the additional  nonvisible Landsat bands raises the   R   2   
by 0.06 for log income and by 0.11 for log population. For predicting log growth 
in income and population, having more complete spectral imagery is of substantial 
value in predictive accuracy.

Performance of 30 m (Low) versus 15 m (High) Resolution Imagery.—The res-
olution of satellite imagery is a key determinant of the information observable in a 
fixed image region. The USGS Landsat 7 imagery we use has a native 30 m reso-
lution. Governments and private companies are working to produce more resolute 
images. DigitalGlobe, for instance, collects and sells satellite imagery with 30 cm 
resolution, where a single 30 m pixel contains 10,000 30 cm pixels. Although such 
 high-resolution data promise massive advances in information content, these gains 
are  counterbalanced by similarly massive increases in computational complexity.

To provide a partial evaluation of the gains to prediction from having higher 
resolution imagery, we compare model performance when doubling the resolu-
tion of daytime satellite imagery from 30 m to 15 m. To perform this comparison, 
we construct 15 m Landsat imagery using panchromatic sharpening, as described 
and used in Jean et  al. (2016). This process restricts the Landsat spectral bands 
to the RGB wavelengths. The results, which appear in online Appendix Table 4, 
contrast the accuracy of CNN models trained on 1.2 km images for 30 m versus 
15 m  pan-sharpened RGB bands. To reduce computational complexity, we limit the 
images used in model training to those in the  mid-Atlantic and southeast United 
States, as shown in online Appendix Figure  3. Results on test samples indicate 
that using the higher resolution imagery leads to no meaningful improvement in fit 
across model specifications. For all models, increases in   R   2   are less than 0.005. This 

17 This lack of predictive power for night lights may be due to the fact that the resolution of 1.2 km images is 
close to that of the 1 km pixels for which raw night light imagery is available. At the pixel level, perhaps unsurpris-
ingly, changes in night lights have little information about income or population growth.
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finding suggests that modestly higher resolution imagery is unlikely to offer large 
improvements in a network’s ability to learn relevant features for  out-of-sample 
prediction at a fixed geographic scale. However, we cannot speak to the possible 
model accuracy if substantially higher resolution imagery were coupled with the 
computational resources to conduct a similar exercise.

D.  Out-of-Sample Predictions

A primary application of our model is to use income and population predictions 
as outcomes for analyses occurring over periods in which census data are coarse 
or unavailable. We offer examples of such analyses in Section IV and guidance on 
implementing them in the online Appendix. To evaluate the accuracy of our predic-
tions in  out-of-sample time periods, we train and tune a modified model in which 
we allocate 70 percent of our images to training and 30 percent to validation. In this 
case, we evaluate model performance in periods outside of 2000 and 2010, rather 
than in a dedicated set of test images as in our baseline models. To estimate accuracy 
in periods as far from our sample period as possible, we use 2020 for population and 
2017 for income.18

Table 2 shows the accuracy of these models when used to predict log population 
and log income in each period for our larger 2.4 km images. We find  in-period accu-
racy similar to our baseline model, at 0.90–0.94 for levels predictions and 0.49–0.51 
for time differences (when including initial conditions). This approach also per-
forms well in predicting  out-of-sample levels: the   R   2   for the levels models including 
initial conditions is 0.92 for 2020 population and 0.89 for 2017 income. There is 
little loss in accuracy for predictions in levels when we extend beyond our sample 
period.

For the more challenging task of predicting  out-of-sample changes, we achieve 
an   R   2   of 0.20 for the change in log population over 2010–2020, approximately half 
of the accuracy seen in our baseline results in the  in-sample period holdout test set. 
However, the income model is unable to outperform the true mean (i.e.,   R   2  = 0 ) 
when forecasting income changes over 2007–2017. Performance improves mark-
edly when we instead set our base period to be the  in-sample year of 2000 and let 
the end period extend seven to ten years beyond the sample.   R   2   values are 0.50 for 
the  2000–2020 population change and 0.42 for the  2000–2017 income change (with 
initial conditions), which are similar to results for the  2000–2010 sample period.

Lower performance in predicting changes, particularly for income over 
 2007–2017, may be related to the sluggish recovery to the Great Recession, which 
may have dampened changes in the visible properties of economic growth. During 
this period, falling unemployment drove economic growth, a type of cyclical adjust-
ment for which our CNN may be poorly suited. A second explanation is lower 
quality label data in the  out-of-sample periods, particularly for income. Because 
 block-level population is only available in decennial census years, we use the 2010 
and 2020 population distributions to disaggregate 2007 and 2017 income, respec-
tively, from block groups to blocks. The resulting noise may be more problematic 

18 Block population for 2020 is from the Census Redistricting Data Files; income for 2017 is from the  2015–2019 
ACS and imputed to blocks using the 2020 population.
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over a  ten-year period than over the longer periods tested, explaining the difference 
in accuracy. Because this label quality issue coincides with recessionary years, we 
are unable to disentangle the two explanations.

We conclude from the results in Table 2 that when evaluated against high-quality 
label data, our approach shows strong potential for producing accurate predictions 
in  out-of-sample periods. The results also indicate that this approach is likely to be 
most effective when predicting changes over long time horizons and in periods that 
do not include large business cycle fluctuations.

III. Discussion

Remotely sensed data have the potential to transform spatial economic analysis. 
Because much of these data are in the public domain, the cost of working at fine 
geographic scales is now low. We show that applying convolutional neural networks 
to daytime satellite imagery predicts microspatial changes in income and population 
at a decadal frequency. An immediate application is to use predictions of income or 
population at these spatial scales as outcomes in analysis. Our method can also be 
used to impute income and population between census years for the United States, to 
extend to other  high-income countries where the relationship between  multispectral 
imagery and economic activity is likely to be similar, and to initialize layers for 
training CNNs in other contexts, thereby reducing computational costs. Khachiyan 
(2021), for example, uses our output to examine the  within-county impacts of the 
US fracking boom.

A related area that would benefit from such data is the study of  place-based 
policies, such as subsidies to firms that invest in designated areas. Justifying these 
policies hinges on whether new investments have positive spatial spillovers (Kline 
and Moretti 2014; Gaubert, Kline, and Yagan 2021). Using our model, researchers 
could evaluate spillovers at much finer spatial scales than is feasible with public 
data. Estimating the welfare consequences of  place-based policies relies further on 
addressing their  nonrandom location and timing. With our model, researchers could 

Table 2—Model   R   2   for National 2.4 km Imagery in  Out-of-Sample Periods

 In-sample period  Out-of-sample period

Population 2000, 2010  2000–2010 2020  2010–2020  2000–2020

With initial conditions 0.9356 0.5132 0.9193 0.1963 0.4967
Without initial conditions 0.8806 0.5030 0.8737 0.1702 0.5106

Income 2000, 2010  2000–2010 2017  2007–2017  2000–2017

With initial conditions 0.9043 0.4910 0.8928 −0.0432 0.4193
Without initial conditions 0.8463 0.4331 0.8302 −0.0999 0.3731

Notes: The table shows   R   2   values computed on all images with 2.4 km sides. The sample size of spatially unique 
images in training and validation subsets is 112,932. Income measures the log of total personal income, while pop-
ulation is the log of total population. The columns delineate fit in the training period and in the out-of-sample peri-
ods, both in terms of levels and differences. Because our imagery panel concludes in 2019, predictions on 2019 
imagery are evaluated against the actual 2020 population and 2009–2019 change predictions against 2010–2020 
population change. Initial conditions included in the model are gender and racial composition, residential employ-
ment shares, and county-level population and income, all measured in the initial period (2000 for demographics, 
2004 for employment).



504 AER: INSIGHTS DECEMBER 2022

examine  preexisting trends and control for  spatial-temporal shocks at much finer 
resolutions (e.g.,  county-year levels) than is possible in conventional data (in which 
the  county-year may be the unit of analysis).

Another application is the evaluation of transport infrastructure, which has seen 
major recent advances (Redding 2020).  Satellite-based measures of income and 
population would allow researchers to evaluate specific projects, such  as intracity 
bus lanes or subway lines, at the neighborhood level across many cities. Such gran-
ularity would permit refined tests of economic theory, such as whether transport 
links lead to more agglomeration in larger nodes (via home market effects) or less 
agglomeration in intermediate nodes (due to agglomeration shadows). Although 
researchers have obtained granular information from smartphone data (e.g., Akbar 
et  al. 2018; Kreindler and  Miyauchi 2021) and private transport platforms (e.g., 
Hall, Palsson, and  Price 2018), there may be  nonrandom selection of users who 
supply these data (e.g., taxi riders in New York City may differ from taxi riders in 
Phoenix). Satellite imagery offers the equivalent of  administrative-level data that is 
consistent across space and time.

A further application is the analysis of natural disasters. Floods, earthquakes, 
wildfires, and tornadoes tend to have highly localized impacts (Dell, Jones, 
and Olken 2014). Our model allows analysts to trace the consequences from point 
of impact to neighboring communities and to broader metro areas. Such disaggre-
gation is important not just for the academic task of evaluating shock transmission 
across space but for policymakers who, after disasters occur, require tools to assess 
where need is likely to be acute.

Finally, our results suggest paths for future work developing predictive models 
from satellite imagery. First, the model does not perform as well in the shorter fre-
quency  out-of-sample prediction exercise, although this could be due to business 
cycles. Addressing this issue could leverage further the ability to use  higher-frequency 
changes in images to predict economic growth. Second, our model is trained on US 
data, and future work could explore how well model parameters perform in other 
countries.

REFERENCES

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, 
Greg S. Corrado, et al. 2016. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems.” arXiv: 1603.04467.

Akbar, Prottoy A., Victor Couture, Gilles Duranton, and Adam Storeygard. 2018. “Mobility and Con-
gestion in Urban India.” NBER Working Paper 25218. 

Babenko, Boris, Jonathan Hersh, David Newhouse, Anusha Ramakrishnan, and Tom Swartz. 2017. 
“Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution 
Satellite Images, with an Application in Mexico.” arXiv: 1711.06323. 

Baum-Snow, Nathaniel, Loren Brandt, J.  Vernon Henderson, Matthew  A. Turner, and Qinghua 
Zhang. 2017. “Roads, Railroads, and Decentralization of Chinese Cities.” Review of Economics 
and Statistics 99 (3): 435–48. 

Boustan, Leah Platt, Matthew E. Kahn, Paul W. Rhode, and Maria Lucia Yanguas. 2020. “The Effect 
of Natural Disasters on Economic Activity in US Counties: A Century of Data.” Journal of Urban 
Economics 118: Article 103257. 

Bruederle, Anna, and Roland Hodler. 2018. “Nighttime Lights as a Proxy for Human Development at 
the Local Level.” PLOS ONE 13 (9): Article 0202231. 

Chen, Xi, and William D. Nordhaus. 2011. “Using Luminosity Data as a Proxy for Economic Statis-
tics.” Proceedings of the National Academy of Sciences 108 (21): 8589–94. 



505KHACHIYAN ET AL.: NEURAL NETWORKS PREDICTING ECONOMIC GROWTH VOL. 4 NO. 4

De Fries, R.S., M. Hansen, J.R.G. Townshend, and R. Sohlberg. 1998. “Global Land Cover Classifica-
tions at 8 km Spatial Resolution: The Use of Training Data Derived from Landsat Imagery in Deci-
sion Tree Classifiers.” International Journal of Remote Sensing 19 (16): 3141–68. 

Dell, Melissa, Benjamin  F. Jones, and Benjamin  A. Olken. 2014. “What Do We Learn from the 
Weather? The New Climate-Economy Literature.” Journal of Economic Literature 52 (3): 740–98. 

Donaldson, Dave, and Adam Storeygard. 2016. “The View from Above: Applications of Satellite Data 
in Economics.” Journal of Economic Perspectives 30 (4): 171–98. 

Faber, Benjamin. 2014. “Trade Integration, Market Size, and Industrialization: Evidence from China’s 
National Trunk Highway System.” Review of Economic Studies 81 (3): 1046–70. 

Gaubert, Cecile, Patrick  M. Kline, and Danny Yagan. 2021. “Place-Based Redistribution.” NBER 
Working Paper 28337. 

Gennaioli, Nicola, Rafael La Porta, Florencio Lopez-de Silanes, and Andrei Shleifer. 2013. “Human 
Capital and Regional Development.” Quarterly Journal of Economics 128 (1): 105–64. 

Glorot, Xavier, and Yoshua Bengio. 2010. “Understanding the Difficulty of Training Deep Feedforward 
Neural Networks.” In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, ed. Yee Whye Teh and Mike Titterington, 9: 249–56. 

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge, MA: MIT 
Press. 

Gorelick, Noel, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca Moore. 
2017. “Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone.” Remote Sensing 
of Environment 202 (1): 18–27.

Greenstone, Michael, Richard Hornbeck, and Enrico Moretti. 2010. “Identifying Agglomeration 
Spillovers: Evidence from Winners and Losers of Large Plant Openings.” Journal of Political Econ-
omy 118 (3): 536–98. 

Hall, Jonathan D., Craig Palsson, and Joseph Price. 2018. “Is Uber a Substitute or Complement for 
Public Transit?” Journal of Urban Economics 108: 36–50.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction. New York: Springer.

Henderson, J. Vernon, Adam Storeygard, and David N. Weil. 2012. “Measuring Economic Growth 
from Outer Space.” American Economic Review 102 (2): 994–1028. 

Henderson, J. Vernon, Tim Squires, Adam Storeygard, and David Weil. 2018. “The Global Distribu-
tion of Economic Activity: Nature, History, and the Role of Trade.” Quarterly Journal of Econom-
ics 133 (1): 357–406. 

Hjort, Jonas, and Jonas Poulsen. 2019. “The Arrival of Fast Internet and Employment in Africa.” 
American Economic Review 109 (3): 1032–79. 

Jean, Neal, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. 
2016. “Combining Satellite Imagery and Machine Learning to Predict Poverty.” Science 353 
(6301): 790–94. 

Jedwab, Rémi, and Adam Storeygard. 2022. “The Average and Heterogeneous Effects of Transporta-
tion Investments: Evidence from Sub-Saharan Africa 1960–2010.” Journal of the European Eco-
nomic Association 20 (1): 1–38.

Khachiyan, Arman. 2021. “The Impacts of Fracking on Microspatial Residential Investment.” Unpub-
lished. 

Khachiyan, Arman, Anthony Thomas, Huye Zhou, Gordon Hanson, Alex Cloninger, Tajana Rosing, 
and Amit K. Khandelwal. 2022. “Replication data for: Using Neural Networks to Predict Microspa-
tial Economic Growth.” American Economic Association [publisher], Inter-university Consortium 
for Political and Social Research [distributor]. https://doi.org/10.3886/E158002V1.

Kingma, Diederik P., and Jimmy Ba. 2017. “Adam: A Method for Stochastic Optimization.” arXiv: 
1412.6980v9.

Kline, Patrick, and Enrico Moretti. 2014. “People, Places, and Public Policy: Some Simple Welfare 
Economics of Local Economic Development Programs.” Annual Review of Economics 6: 629–62. 

Kreindler, Gabriel  E., and Yuhei Miyauchi. 2021. “Measuring Commuting and Economic Activity 
Inside Cities with Cell Phone Records.” NBER Working Paper 28516. 

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep Learning.” Nature 521 (7553): 436–
44. 

Manson, Steven, Jonathan Schroeder, David Van  Riper, Tracy Kugler, and Steven Ruggles. 2020. 
“IPUMS National Historical Geographic Information System: Version 15.0.” IPUMS. http://doi.
org/10.18128/D050.V15.0 (accessed April 6, 2020).

Michalopoulos, Stelios, and Elias Papaioannou. 2014. “National Institutions and Subnational Develop-
ment in Africa.” Quarterly Journal of Economics 129 (1): 151–213. 

https://doi.org/10.3886/E
http://doi.org/10.18128/D050.V15.0
http://doi.org/10.18128/D050.V15.0
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.52.3.740&citationId=p_9
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.102.2.994&citationId=p_20
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjep.30.4.171&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.20161385&citationId=p_22


506 AER: INSIGHTS DECEMBER 2022

Pesaresi, Martino, Daniele Ehrlich, Stefano Ferri, Aneta J. Florczyk, Sergio Freire, Matina Halkia, 
Andreea Julea, Thomas Kemper, Pierre Soille, and Vasileios Syrris. 2016. Operating Procedure 
for the Production of the Global Human Settlement Layer from Landsat Data of the Epochs 1975, 
1990, 2000, and 2014. Brussels: Joint Research Centre of the European Commission. 

Piaggesi, Simone, Laetitia Gauvin, Michele Tizzoni, Natalia Adler, Stefaan Verhulst, Andrew Young, 
Rhiannan Price, Leo Ferres, Ciro Cattuto, and André Panisson. 2019. “Predicting City Poverty 
Using Satellite Imagery.” Paper presented at the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR) Workshops, Long Beach, CA, June 16–20.

Redding, Stephen J. 2020. “Trade and Geography.” NBER Working Paper 27821. 
Redding, Stephen J., and Matthew A. Turner. 2015. “Transportation Costs and the Spatial Organi-

zation of Economic Activity.” In Handbook of Regional and Urban Economics, Vol. 5, edited 
by Gilles Duranton, J. Vernon Henderson, and William C. Strange, 1339–98. Amsterdam:  
North-Holland. 

Rolf, Esther, Jonathan Proctor, Tamma Carleton, Ian Bolliger, Vaishaal Shankar, Miyabi Ishihara, 
Benjamin Recht, and Solomon Hsiang. 2021. “A Generalizable and Accessible Approach to 
Machine Learning with Global Satellite Imagery.” Nature Communications 12: Article 4392. 

Rosenstein, Michael  T., Zvika Marx, Leslie  Pack Kaelbling, and Thomas  G. Dietterich. 2005. “To 
Transfer or Not to Transfer.” Paper presented at the NIPS 2005 Workshop: Inductive Transfer: 10 
Years Later, Whistler, British Columbia, December 9. 

Samek, Wojciech, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert 
Müller. 2017. “Evaluating the Visualization of What a Deep Neural Network Has Learned.” IEEE 
Transactions on Neural Networks and Learning Systems 28 (11): 2660–73. 

Simonyan, Karen, and Andrew Zisserman. 2015. “Very Deep Convolutional Networks for Large-Scale 
Image Recognition.” arXiv: 1409.1556v6.

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. 2014. “Deep Inside Convolutional Net-
works: Visualising Image Classification Models and Saliency Maps.” arXiv: 1312.6034v2. 

Storeygard, Adam. 2016. “Farther On Down the Road: Transport Costs, Trade, and Urban Growth in 
Sub-Saharan Africa.” Review of Economic Studies 83 (3): 1263–95.

US Census Bureau. 2020. “LEHD Origin-Destination Employment Statistics Data (2004): Version 7.” 
Longitudinal Employer-Household Dynamics Program. https://lehd.ces.census.gov/data/ (accessed 
January 22, 2020).

Ural, Serkan, Ejaz Hussain, and Jie Shan. 2011. “Building Population Mapping with Aerial Imag-
ery and GIS Data.” International Journal of Applied Earth Observation and Geoinformation 13 
(6): 841–52.

Zeiler, Matthew D., and Rob Fergus. 2014. “Visualizing and Understanding Convolutional Networks.” 
In Computer Vision—ECCV 2014, ed. David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuy-
telaars, 818–33. Cham, Switzerland: Springer.

Zha, Y., J. Gao, and S. Ni. 2003. “Use of Normalized Difference Built-Up Index in Automatically Map-
ping Urban Areas from TM Imagery.” International Journal of Remote Sensing 24 (3): 583–94.

https://lehd.ces.census.gov/data/

	Using Neural Networks to Predict Microspatial Economic Growth
	I. Data and Methods
	A. Imagery and Label Data
	B. Convolutional Neural Networks for Spatial Economic Analysis
	C. Robustness Exercises

	II. Results
	A. CNN Model Performance
	B. Comparison with Night Light Intensity
	C. Training, Tuning, and Testing Procedure
	D. Out-of-Sample Predictions

	III. Discussion
	REFERENCES




