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Optimal Lockdown in a Commuting Network†

By Pablo D. Fajgelbaum, Amit Khandelwal, Wookun Kim,  
Cristiano Mantovani, and Edouard Schaal*

We study optimal dynamic lockdowns against COVID-19 within a 
commuting network. Our framework integrates canonical spatial 
epidemiology and trade models and is applied to cities with varying 
initial viral spread: Seoul, Daegu, and the New York City metropol-
itan area (NYM). Spatial lockdowns achieve substantially smaller 
income losses than uniform lockdowns. In the NYM and Daegu—with 
large initial shocks—the optimal lockdown restricts inflows to cen-
tral districts before gradual relaxation, while in Seoul it imposes low 
temporal but large spatial variation. Actual commuting reductions 
were too weak in central locations in Daegu and the NYM and too 
strong across Seoul. (JEL H51, I12, I18, R23, R41)

Commuting networks are the backbone of cities, allowing interactions that are 
vital for economic growth. On a typical day, Manhattan receives as many com-
muters as its residents—about 1.6 million people. Two months after the onset of 
COVID-19, the New York City metropolitan area (NYM) commute flows were 
48 percent below pre-pandemic levels. Weighing the economic costs against the 
benefits of stopping COVID-19, was this reduction too large or not large enough? 
To fight a highly infectious disease without a vaccine, public authorities must decide 
if and how to curtail movements across locations connected via commuting and 
trade.1 How should lockdown policies be set across locations and time?

In this paper we establish an efficient benchmark against which to measure the 
losses from uncoordinated or spatially uniform lockdown efforts. We study optimal 
dynamic lockdowns to fight pandemics in a commuting network using a framework 

1 Lockdowns were announced fairly uniformly across bordering US states, with a mean difference of four days, 
although there has been variation in county-level policies. For example, New York, New Jersey, and Connecticut 
imposed almost simultaneous lockdown in March 2020, while Illinois did so more than two weeks before Missouri 
(Raifman et al. 2020).
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that integrates standard spatial epidemiology and trade models.2 In the model, a 
disease spreads through interactions of commuters at the workplace. Lockdown 
policies directly reduce the real income of workers who stay at home and increase 
shopping costs and indirectly impact other locations through shifts in expenditures.3 
In reality, policies that close specific businesses preclude commutes along particu-
lar routes. Our planning problem determines the fraction of each origin-destination 
commuting flow allowed to operate at each point in time to minimize the economic 
costs and the loss of lives. We also implement optimal lockdowns by origin or desti-
nation that resemble less flexible closures (e.g., lockdowns by neighborhood).

We apply the model using real-time commuting data across districts in two South 
Korean cities, Seoul and Daegu, and cell phone mobility data across counties in the 
NYM. We compare optimal pandemic-fighting strategies across intensities of the 
initial virus shock and contrast them with the observed commuting responses. We 
analyze Korean cities because Korea has tested for COVID-19 at greater intensities 
than most countries, making the timeline of their case data more reliable.4 Seoul is 
the largest city in Korea and experienced a relatively small caseload, while Daegu 
(Korea’s fourth-largest city) experienced the country’s largest shock. We study the 
NYM because of its economic importance and rapid spread.

We compute the optimal lockdown given the COVID-19 spread when lockdown 
policies were announced. The model matches pre-pandemic commuting flows and 
wages across locations (Korean districts and NYM counties). We estimate the trans-
mission rate using data on the spatial distribution of new cases and commuting flows 
over time. We use geocoded credit card expenditure data from Seoul to estimate the 
impact of lockdown on the travel costs of shopping.

Our first results show that in the NYM and Daegu—where the virus initially 
spread very quickly—locations with high virus-diffusion potential are subject to a 
strict initial lockdown, eliminating up to 70 percent of pre-pandemic inflows, which 
is partially relaxed over 3 to 6 months. In the NYM, many locations are locked down 
early, but only the top three central locations (Manhattan, Brooklyn, and the Bronx) 
remain closed for a long time in expectation that a vaccine arrives. In contrast, in 
Seoul—where the initial spread of COVID-19 was much smaller—the planner ini-
tially locks down only a few locations of relatively high centrality. As the virus 
spreads, the lockdown intensifies and retains considerable spatial variation.

Our main result reveals large benefits from spatial targeting. Specifically, we 
find substantially lower real income losses from spatial targeting compared to an 
optimal but spatially uniform lockdown. Given the actual case count by April 30, 
spatial targeting would have led to 20 percent, 32 percent, and 58 percent lower eco-
nomic costs in Daegu, Seoul, and the NYM, respectively, than the optimal uniform 
lockdown. We find that optimal lockdowns by destination of commuting flows are 

2 The spatial SIR model we formulate is closely related to the multi-city epidemic model in Arino and van den 
Driessche (2003), in which the disease is transmitted from infected residents of location ​i​ to susceptible residents of 
location ​j​ when they meet in location ​k​. The trade model follows Anderson and van Wincoop (2003).

3 Caliendo et al. (2018) and Monte, Redding, and Rossi-Hansberg (2018) study diffusion of local shocks across 
and within cities in related gravity models.

4 Korea had performed 0.878 tests per one thousand people at the time of its one thousandth patient compared 
to 0.086 in the United States. Stock (2020), Manski and Molinari (2020), Korolev (2021), and Atkeson (2020a) 
discuss challenges arising from infrequent testing.



505FAJGELBAUM ET AL.: OPTIMAL LOCKDOWN IN A COMMUTING NETWORKVOL. 3 NO. 4

almost as efficient as the fully flexible benchmark, suggesting that spatially targeted 
business lockdowns may be enough to reap the benefits of spatial targeting.

Finally, we compare the optimal benchmark with the observed commuting reduc-
tions resulting from government action and commuters’ precautionary behavior. 
On average across locations, commuting declines reached troughs of 79 percent, 
36 percent, and 79 percent below pre-pandemic levels in Daegu, Seoul, and the 
NYM before modestly reverting upward. In the NYM and Daegu, these city-level 
declines are not far from the optimal benchmark. However, the most central (periph-
eral) locations exhibited a weaker (stronger) reduction in commuting than what 
would have been optimal. Across Seoul, the actual commuting reductions were too 
strong compared to the optimal. As a result, across all three cities, the real income 
losses could have been much smaller through optimal spatial targeting.

Studies of optimal epidemic control in economic models include Goldman 
and Lightwood (2002) and Rowthorn and Toxvaerd (2012) and in the context of 
COVID-19, Atkeson (2020b); Alvarez, Argente, and Lippi (2020); Jones, Philippon, 
and Venkateswaran (2020); Piguillem and Shi (2020); Rowthorn (2020); and 
Rowthorn and Toxvaerd (2020), among others. Acemoglu et al. (2020), Baqaee et 
al. (2020), and Glover et al. (2020) among others study lockdown with heteroge-
neous agents.

Adda (2016) demonstrates that diseases spread through transportation networks, 
exploiting variation from public transport strikes in France, and Viboud et al. (2006) 
show that work-related flows correlate with influenza’s regional spread in the United 
States. For COVID-19, Tian et al. (2020) argue that the Wuhan lockdown and sus-
pending public transport delayed the spread across China, Fang, Wang, and Yang 
(2020) show that the lockdown reduced infection rates using real-time movement 
data, Kissler et al. (2020) show that commuting correlates with cases within New 
York, and Hsiang et al. (2020) and Flaxman et al. (2020) show that interventions 
such as lockdown reduced the spread.

Spatial SIR models were first used to study influenza and measles (Rvachev and 
Longini 1985, Bolker and Grenfell 1995). Germann et al. (2006), Eubank et al. 
(2004), and Drakopolous and Zheng (2017) study targeted policies in spatial or net-
work models, and Rowthorn, Laxminarayan, and Gilligan (2009) analyze their the-
oretical properties. For COVID-19,  Azzimonti et al. (2020); Birge, Candogan, and 
Feng (2020); Chang et al. (2020); Chinazzi et al. (2020); and Giannone, Paixão, and 
Pang (2021) simulate policies in spatial and network SIR models; Argente, Hsieh, 
and Lee (2020) consider case information disclosure; and Antràs, Redding, and 
Rossi-Hansberg (2020) study pandemics in a trade model with human interactions.

Our contribution is threefold. First, we implement optimal lockdown over both 
time and space in a commuting network. Second, to evaluate the diffusion of eco-
nomic costs through changes in spending, we integrate a general equilibrium trade 
framework. Third, we use real-time commuting and expenditure data to estimate 
and compare the actual commuting responses over space with optimal lockdowns.

I.  Model

We use a standard spatial epidemiology model similar to Arino and van den 
Driessche (2003). The general equilibrium corresponds to a standard quantitative 
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gravity trade model (e.g., Anderson and van Wincoop 2003, and Eaton and Kortum 
2002).

A. Spatial Diffusion

The economy consists of ​J​ locations in continuous time. Before the pandemic, in 
each location ​i​ there are ​​N​0​​​(i)​​ residents, of which a fraction ​λ​(i, j)​​ commute to ​j​. We 
let ​Λ​ be the matrix of bilateral commuting flows such that ​​​[Λ]​​ij​​  =  λ​(i, j)​​.5

At each time ​t​, the surviving residents of location ​i​ are either susceptible, exposed, 
infected, or recovered in quantities ​S​(i, t)​​, ​E​(i, t)​​, ​I​(i, t)​​, and ​R​(i, t)​​, respectively. 
Susceptible agents become exposed after interacting with infected agents; exposed 
agents are latent carriers who do not infect others and become infected at rate ​​γ​I​​​. 
Infected agents die at rate ​​γ​D​​​ or recover (and become immune) at rate ​​γ​R​​​. The spatial 
distributions are collected in the (column) vectors ​S​(t)​​, ​E​(t)​​, ​I​(t)​​, and ​R​(t)​​.

The government can control the fraction ​χ​(i, j, t)​​ of commuting flows from ​i​ to ​j​ 
by imposing lockdown measures, providing incentives, or broadcasting informa-
tion.6 Every agent is subject to the policy regardless of infection status. Among 
those not infected and not physically commuting, a fraction ​δ​ telecommutes. Among 
the infected, only the asymptomatic fraction ​ζ​ works. The lockdown policies are 
collected in the ​J​ by ​J​ matrix ​χ​(t)​​.

The geographic spread of the disease depends on how much infected and suscep-
tible people interact in space. The infections could happen anywhere at commuting 
locations, such as in train stations, workplaces, or restaurants. In this benchmark the 
virus diffuses only through commuting. In alternative specifications we also allow 
the virus to spread through shopping.

Let ​​S ̃ ​​( j, t)​  ≡ ​ ∑ i′​   ​​ χ​(i′, j, t)​λ​(i′, j)​S​(i′, t)​​ be the number of susceptible agents (from 
any origin) exposed in ​j​ and ​​I ̃ ​​( j, t)​  ≡  ζ​∑ i′​   ​​ χ​(i′, j, t)​λ​(i′, j)​I​(i′, t)​​ be the number of 
infected asymptomatic agents (from any origin) spreading the disease in ​j​. In matrix 
form, ​​S ̃ ​​(t)​  ≡ ​ H​S​​​(t)​S​(t)​​ and ​​I ̃ ​​(t)​  ≡ ​ H​I​​​(t)​I​(t)​​, where ​​H​S​​​(t)​​ and ​​H​I​​​(t)​​ are spatial inci-
dence matrices that depend on pre-pandemic commuting flows and current lock-
down policies:

(1)	 ​​H​u​​​(χ​(t)​)​  = ​ ζ​u​​​​(Λ ⋅ χ​(t)​)​ ′ ​,​

where ​​ζ​I​​  =  ζ​, ​​ζ​S​​  =  1​ and ​⋅​ is the element-wise product. The ​​(ji)​​ element of ​​H​S​​​(t)​​ 
is the exposure of the ​S​(i, t)​​ susceptible residents of location ​j​ to the ​​I ̃ ​​( j, t)​​ infected 
commuters to ​j​. Similarly, the ​​( ji)​​ element of ​​H​I​​​(t)​​ is the exposure of the ​I​(i, t)​​ 
infected residents of location ​j​ to the ​​S ̃ ​​( j, t)​​ susceptible commuters to ​j​.

The flow of new infections in ​j​ is

(2)	 ​​M​j​​​(​I ̃ ​​( j, t)​, ​S ̃ ​​( j, t)​)​,​

5 These initial distributions could be the equilibrium of a spatial model as in Redding and Rossi-Hansberg 
(2017). Given our time frame, we assume no job switches other than through lockdown.

6 An implicit assumption is that policymakers can randomly test to obtain location-specific distributions of each 
infection status but cannot observe every individual’s status. Such random testing would also mitigate potential 
errors in testing (e.g., Manski and Molinari 2020).
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where ​​M​j​​​( ⋅ )​​ represents the matching process between infected and suscepti-
ble individuals in ​j​. The infections taking place in ​j​ are carried back by sus-
ceptible and infected agents to their residence. Of these infections, a fraction 
​​H​S​​​( j, i, t)​S​(i, t)​/​S ̃ ​​( j, t)​​ correspond to residents of ​i​. Therefore, the flow of the new 
infections among location ​i​’s residents is

(3)	 ​​S ̇ ​​(i, t)​  =  − ​∑ 
j
​ 
 
 ​​ ​ 
​H​S​​​( j, i, t)​S​(i, t)​

  _ 
​S ̃ ​​( j, t)​

 ​ ​ M​j​​​(​I ̃ ​​( j, t)​, ​S ̃ ​​( j, t)​)​.​

B. Real Income

The economic costs of lockdown enter through the distribution of real income,

(4)	 ​U​(i, t)​  = ​ 
Y​(i, t)​
 _ 

P​(i, t)​ ​,​

where ​P​(i, t)​​ is the cost of living and ​Y​(i, t)​​ is the nominal income of location-​i​ 
residents:

(5)	 ​Y​(i, t)​  = ​   ∑ 
u=S,E,I,R

​​​ ​∑ 
j
​ ​​ ​N​u​​​(i, j, t)​w​( j, t)​​.

Here, ​w​( j, t)​​ is the wage per efficiency unit in ​j​ at time ​t​, and ​​N​u​​​(i, j, t)​​ is the flow of 
efficiency units of type-​u​ commuters from ​i​ to ​j​:

(6)	 ​​N​u​​​(i, j, t)​  = ​ ζ​u​​​[χ​(i, j, t)​ + ​(1 − χ​(i, j, t)​)​δ]​λ​(i, j)​u​(i, t)​,​

for ​u = S, E, I, R​, where ​​ζ​I​​ = ζ​ is the fraction of asymptomatic infected and ​​ζ​u​​ = 1​ 
for ​u  ≠  I​. The efficiency units flowing from ​i​ to ​j​ include those physically com-
muting, ​χ​(i, j, t)​​, and those not commuting scaled by the fraction of telecommuters, ​​
(1 − χ​(i, j, t)​)​δ​.

The jobs at ​j​ produce goods or services with productivity ​z​(j)​​. Consumers have a 
constant elasticity of substitution ​σ​ across goods from different locations. Residents 
of ​i​ face costs ​τ  ​(i, j, t)​  ≡  τ  ​(i, j, χ​(i, j, t)​)​  >  1​ when shopping in ​j​. The lockdown 
restrictions increase this shopping cost.

At all ​t​, the income of workers employed in ​j​ equals the aggregate expenditures 
in the goods they produce:

(7)	 ​w​( j, t)​​  ∑ 
u=S,E,I,R

​ 
 
 ​​ ​ ∑ 

i
​ 
 
 ​​ ​ N​u​​​(i, j, t)​  = ​ ∑ 

i
​ 
 
 ​​  s​(i, j, t)​Y​(i, t)​  for all j,​

where

(8)	 ​s​(i, j, t)​  ≡ ​​ (​ 
p​(i, j, t)​
 _ 

P​(i, t)​ ​)​​​ 
1−σ

​​

is the expenditure share of goods from ​j​ by residents of location ​i​ given the price 
​p​(i, j, t)​  =  τ   ​(i, j, t)​ w​( j, t)​/z  ​( j)​​, and where

(9)	 ​P​(i, t)​  = ​​ (​∑ 
j
​ 
 
 ​​  p ​​(i, j, t)​​​ 1−σ​)​​​ 

​  1 _ 1−σ ​
​​

is the price index in ​i​. In equilibrium, ​​{w​( j, t)​, P​( j, t)​}​​ are such that (7) and (9) hold.
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C. Planning Problem

A social planner chooses the lockdown matrix to maximize the present discounted 
value of real income net of loss of lives. The aggregate real income of location ​j​ 
depends on the spatial distributions of lockdown and residents by infection status:

(10)	 ​U​( j, t)​  ≡  U​( j; S​(t)​, E​(t)​, I​(t)​, R​(t)​, χ​(t)​)​.​

A vaccine and a cure become freely available with probability ​ν​ in every 
time period. If the cure occurs at time ​t​, location ​j​ generates the real income 
​​U 
–
 ​​( j, t)​  ≡  U​( j; 0, 0, 0, S​(t)​ + E​(t)​ + I​(t)​ + R​(t)​, ​1​J×J​​)​​ forever. The planning prob-

lem is7

(11)	 ​W  = ​ max​ 
χ​(t)​

​ ​ ​∫ 
0
​ 
∞

​​​e​​ −​(r+ν)​t​ ​∑ 
j
​ 
 
 ​​​ [U​( j, t)​ + ​ ν _ r ​​U 

–
 ​​( j, t)​ − ω ​γ​D​​ I​( j, t)​]​ dt​,

subject to

(12)	 ​​S ˙ ​​(t)​  =  − S​(t)​ ⋅ ​[​H​S​​​​(χ​(t)​)​ ′ ​​(M​(​S ̃ ​​(t)​, ​I ̃ ​​(t)​)​ ⋅ / ​S ̃ ​​(t)​)​]​,​

(13)	 ​​E ˙ ​​(t)​  =  − ​S ˙ ​​(t)​ − ​γ​I​​ E​(t)​,​

(14)	 ​​I ˙ ​​(t)​  = ​ γ​I​​ E​(t)​ − ​(​γ​R​​ + ​γ​D​​)​I​(t)​,​

(15)	 ​​R ˙ ​​(t)​  = ​ γ​R​​ I​(t)​,​

where ​M​( ⋅ )​​ is a vector with the new matches, and where ​​S ̃ ​​(t)​  = ​ H​S​​​(χ​(t)​)​S​(t)​​ and 
​​I ̃ ​​(t)​  = ​ H​I​​​(χ​(t)​)​I​(t)​​ are the susceptible and infected agents.8 The matrix ​χ​(t)​​ 
impacts aggregate real income and the spatial incidence matrix through (1) and (10).

Following standard SEIR models, we impose a multiplicative matching function,

(16)	 ​​M​j​​​(​I ̃ ​, ​S ̃ ​)​  = ​ β​j​​ ​I ̃ ​​S ̃ ​,​

where ​​β​j​​​ is a location-specific diffusion rate. For intuition about the planner’s incen-
tives, fix the wage distribution and consider a case where lockdowns do not impact 
shopping costs. Then the interior solution of the FOC with respect to ​χ​(i, j, t)​​ is

	​ ​(1 − δ)​w​(j)​  =  Δ​(i, t)​​ S​(i, t)​
 _ 

N​(i, t)​ ​ ​β​j​​ ​∑ 
​i ′ ​
​ ​​ ζI​(i′, t)​λ​(i′, j)​χ​(i′, j, t)​​

	​ +  ​ 
ζI​(i, t)​
 _ 

N​(i, t)​ ​ ​β​j​​ ​∑ 
k
​ ​​ Δ​(k, t)​S​(k, t)​λ​(k, j)​χ​(k, j, t)​,​

7 The flow value for the planner’s utility from location ​j​ is

​​W​0​​​( j, t)​  = ​ (U​( j, t)​ − ω ​γ​D​​ I​( j, t)​)​dt + νdt​e​​ −rdt​ ​ 
​U 
–
 ​​( j, t)​
 _____ r ​  + ​e​​ −rdt​​(1 − νdt)​ ​W​0​​​( j, t + dt)​.​

This value includes the payoff ​U​( j, t)​ − ω ​γ​D​​ I​( j, t)​​, the probability ​νdt​ of transitioning to a vaccine and its value ​​
U 
–
 ​​( j, t)​/r​, and the continuation value. Solving for the present discounted value for location ​j​ and adding up across 

locations yields (11).
8 The notation ​⋅ ⁣/​ stands for element-wise ratio.
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where ​N​(i, t)​​ is the surviving population of ​i​ at time ​t​ and ​Δ​(i, t)​  ≡ ​ μ​S​​​(i, t)​ − 
​μ​E​​​(i, t)​​, the difference between the co-states of (12) and (13), represents the value 
of avoiding exposure.

On the left, the economic costs of lockdown equal the wage losses of work-
ers who do not telecommute. On the right, the first line captures the benefits of 
deterring susceptible agents in ​i​ from commuting and therefore being exposed 
to infected agents at the destination. Similarly, the second line captures that the 
lockdown deters infected agents from ​i​ from transmitting the disease in ​j​. The con-
dition highlights the critical trade-off for the planner: central locations are likely 
to have higher wages and to be hubs for transmission. So, whether they should 
endure stricter lockdowns depends on the relative importance of economic and 
health costs.

II.  Data and Parametrization

The parametrization uses case data and real-time commuting flows to estimate 
the virus transmission rate. The optimization is implemented starting at the lock-
down announcement date using pre-pandemic data on commuting flows, wages, 
population, and spending. Our units of analysis are the 25 districts in Seoul and 8 
districts in Daegu. We define the NYM to be 20 counties: 5 NYC boroughs, 5 coun-
ties in New York (Putnam, Rockland, Westchester, Nassau, Suffolk), 8 counties in 
New Jersey (Bergen, Essex, Hudson, Middlesex, Morris, Passaic, Somerset, Union), 
and 2 counties in Connecticut (Fairfield, New Haven).

A. Data

COVID-19 Data.—The Seoul Metropolitan Government released patient-level 
case data. We filed an Official Information Disclosure Act request to obtain 
patient-level data from the Daegu Metropolitan Government. We built a daily panel 
dataset with total confirmed cases in the Seoul and Daegu districts. County-level 
NYM cases come from Johns Hopkins University and the NY State Department of 
Health. The Korean data allow us to exclude cases arriving from overseas travels 
that were stopped at the border.

There are limitations to using data on COVID-19 infections due to bias of the 
tested population and sensitivity of the tests. These limitations are more severe at 
the onset of the pandemic when testing intensity was low. Our estimation of the 
virus transmission rate uses data from the later periods when reporting and testing 
improved. Additionally, in Korea, testing intensity has been high since the onset.

Daily Commuter Data.—For Seoul, we use district-to-district commute flows on 
the public transit system (subway and bus) through confidential individual trip-level 
data (Tmoney 2020). Passengers enter and exit public transit using a card with a 
unique identifier, from which we obtain the time, origin, and destination of each 
commute. We retain weekdays from 4:00 am to 12:00 pm (12:00 pm to 8:00 pm on 
weekends, since commutes start later) to capture the first commute leg. We aggregate 
over individual trips to bilateral daily commute flows from January 2018 to April 
2020. Pre-pandemic commute flows are the 2018/2019 averages.



510 AER: INSIGHTS DECEMBER 2021

For Daegu, we measure daily commuting using subway turnstile data from January 
2018 to April 2020, made available by Daegu Metropolitan Transit Corporation. We 
retain entries and exits using the same commute window as in Seoul. Stations’ total 
entries (exits) plausibly capture the density of residents (jobs) if commuters enter 
(exit) the subway station closest to their residence (workplace). We aggregate the 
station-level data to the district level. Pre-pandemic commute flows come from the 
2015 Korean Population Census, which records where people live and work (Kim 
2020).

For the NYM, we measure county-to-county daily movements using cell phone 
data from SafeGraph (real-time turnstile data within New York City is not available 
for suburban commuter rails). The data cover the period from January 1, 2020, to 
April 30 and are constructed from anonymized smartphone movement data collected 
daily at the census block group level. We aggregate these data to NYM counties. 
Pre-pandemic commute flows for the NYM are the averages from January 1 to 20.

Online Appendix Table  A.1 summarizes the commuter data and dates of key 
events described in the next subsection.

Wages and Population.—Population and wage data for the Korean districts come 
from the 2019 resident registration database and the 2019 Statistical Yearbook of 
National Tax (Ministry of Interior and Safety of Korea 2019, National Tax Services 
2019). NYM county wages are constructed from the 2017 Longitudinal Employer-
Household Dynamics Origin-Destination Employment Statistics, which reports the 
number of workers by wage bin and census block (US Census Bureau 2017).9 NYM 
county populations in 2019 are from the US Census Bureau.

Credit Card Spending.—We access data on the universe of transactions at 
brick-and-mortar shops within Seoul using credit and debit cards from Shinhan 
Bank, one of Korea’s top three banks. We observe the addresses of cardholders and 
businesses and the purchase values. We construct a daily district-to-district spending 
matrix from January 2018 to April 2020 among the 25 districts of Seoul, restricting 
the data to spending by Seoul residents. With this data we estimate elasticities of 
spending to distance and to post-lockdown commuting flows.

B. Commuting Responses

The first three panels in Figure 1 plot time fixed effects for commuting flows 
relative to pre-pandemic averages since January 2020 in each city. For Seoul and 
the NYM, where we observe bilateral flows, we estimate ​​N​ijt​​/​​N ¯ ​​ij,τ​(t)​​​  = ​ π​t​​ + ​ϵ​ijt​​​. 
The dependent variable are flows at ​t​ relative to pre-pandemic flows, and ​τ  ​(t)​​ is a 
day-of-week and month dummy. For Daegu the figure reports ​​E​it​​/​​E 

–
 ​​i,τ​(t)​​​  = ​ π​t​​ + ​ϵ​it​​​, 

where the dependent variable is daily turnstile entries. The figure reports ​​π​t​​​ for each 
city.

In each figure the first vertical line denotes the first confirmed case in the coun-
try, the middle line denotes the first case in the city, and the last line is the date of 

9 Bins are defined as lower than $1,250, between $1,250 and $3,333, and above $3,333 per month.
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the lockdown announcement. We overlay the daily counts of new COVID-19 cases 
scaled by city population.10

The first confirmed case within Korea occurred on January 26, and ridership in 
both cities dropped and remained down roughly 10 percent. After the first confirmed 
case within Daegu on February 17, the virus spread quickly and commuting declined 
steeply. Within Seoul, there was no further change after the first confirmed case on 

10 Following Fang, Wang, and Yang (2020), we find a positive correlation between lags of commuting and new 
daily infections after controlling for location and date fixed effects. See online Appendix B.

0

0.001

0.002

0.003

0.004

0.005

N
ew

 C
O

V
ID

-19 cases
 per thousand (num

ber)

P
er

ce
nt

 c
ha

ng
e 

co
m

m
ut

e 
�o

w
s

1/
1

1/
8

1/
15

1/
22

1/
29 2/
5

2/
12

2/
19

2/
26 3/
4

3/
11

3/
18

3/
25 4/
1

4/
8

4/
15

4/
22

4/
29

1/
1

1/
8

1/
15

1/
22

1/
29 2/
5

2/
12

2/
19

2/
26 3/
4

3/
11

3/
18

3/
25 4/
1

4/
8

4/
15

4/
22

4/
29

Seoul

0

0.2

0.4

0.6

0.8

N
ew

 C
O

V
ID

-19 cases
 per thousand (num

ber)

P
er

ce
nt

 c
ha

ng
e 

co
m

m
ut

e 
�o

w
s

1/
10

1/
17

1/
24

1/
31 2/
7

2/
14

2/
21

2/
28 3/
6

3/
13

3/
20

3/
27 4/
3

4/
10

4/
17

4/
24 5/
1

NYM

0

0.1

0.2

0.3

N
ew

 C
O

V
ID

-19 cases
 per thousand (num

ber)

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

P
er

ce
nt

 c
ha

ng
e 

co
m

m
ut

e 
�o

w
s

Daegu

−0.06
−0.04
−0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16

Seoul

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Commuting (left axis)      New infections (right axis) Commuting (left axis)      New infections (right axis)

Commuting (left axis)      New infections (right axis) Commuting (left axis)     Spending share (right axis)

−1

−0.8

−0.6

−0.4

−0.2
0

0.2

0.4

0.6 P
ercent change w

ithin-district
 spending share

P
er

ce
nt

 c
ha

ng
e 

co
m

m
ut

e 
�o

w
s

1/
1

1/
8

1/
15

1/
22

1/
29 2/
5

2/
12

2/
19

2/
26 3/
4

3/
11

3/
18

3/
25 4/
1

4/
8

4/
15

4/
22

4/
29

Figure 1. Commute and Spending Responses and Disease Spread

Notes: Figure reports the average daily changes in commute flows relative to the pre-pandemic levels, correspond-
ing to the time fixed effects from the equation in Section IIB (left axis). The time fixed effects are normalized to zero 
on January 8, 2020, for Daegu and Seoul (January 22, 2020, for the NYM). Weekdays (weekends/holidays) are 
denoted in darker (lighter) circles. The regression sample size is 968 for Daegu, 75,625 for Seoul, and 48,383 for the 
NYM. Each observation is a district-by-date pair for Daegu and a district/county-pair-by-date tuple for Seoul and 
the NYM from January 1, 2020, to April 30. The first vertical line in each graph denotes the date of the first case in 
the country. The middle and last vertical lines denote the dates of the first case and the lockdown announcement in 
each city, respectively. Wild bootstrap standard errors are clustered by district for Daegu and two-way clustered by 
origin and destination for Seoul and the NYM (Cameron, Gelbach, Miller 2008). Error bars show 95 percent con-
fidence intervals. The right axis reports the daily new COVID-19 cases in Daegu (top left), NYM (top right), and 
Seoul (bottom left). The right axis in the bottom right panel reports the average daily changes in the share of each 
district’s expenditures spent in the same district relative to the pre-pandemic levels, denoted in squares (the com-
muting response in the bottom right panel is replicated from the bottom left panel).
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January 30. The right axes show that the spread was much larger in Daegu than in 
Seoul, which may explain the different commuting responses.

After the virus spread throughout Korea during February, a national task force 
laid out guidelines that included social distancing, working from home, canceling 
nonessential gatherings, and postponing the start date for schools and universi-
ties. Following the announcement on February 24, ridership fell in both cities 
for roughly two weeks before slowly trending back upward. Overall, ridership 
fell 60.2 percent and 34.9 percent in Daegu and Seoul, respectively, between the 
announcement date and April 30. The standard errors suggest similar responses 
across districts.

In contrast, in the NYM we do not observe declines in commuting before the first 
confirmed within-city case on March 3. New York State issued a lockdown order 
on March 22 that closed nonessential businesses.11 At that time, commuting was 
already trending downward and continued to fall until mid-April to 67.3 percent 
below the pre-pandemic flows.

C. Model Parameters

We bring the model to the data using daily frequency. Table 1 summarizes the 
parameters, and Appendix A describes the numerical resolution method.

Disease Dynamics.—Following Ferguson et al. (2020) we set ​​γ​I​​​ consistent with 
an incubation period of 5.1 days and as robustness also consider 4.2 days (Sanche 
et al. 2020). Following Wang et al. (2020) we set ​​γ​R​​​ consistent with a recovery time 
of 18 days and also show results assuming 10 days. Ferguson et al. (2020) obtain 
an infection fatality ratio of ​0.9 percent​, which we use as benchmark, and we also 
use a lower bound of ​0.3 percent​ across studies (Hall, Jones, and Klenow 2020). 
Alamian et al. (2019) estimate that 36 percent of infections are asymptomatic. We 
use this number as benchmark and half that rate as robustness. For ​​δ​u​​​, Dingel and 
Neiman (2020) report that 46 percent of jobs in the United States could be done 
from home. A survey by Job Korea says that 60 percent of workers can telecom-
mute.12 The probability of finding a vaccine corresponds to an expected arrival time 
of 18 months.

The benchmark value of life ​ω​ assumes an expected lifetime of 14.5 years for 
COVID-19 victims times an annual value of $185,000 calculated by Hall, Jones, and 
Klenow (2020) minus the discounted value of wages (already accounted for by the 
planner in the economic costs). To trace a Pareto frontier we also vary ​ω​ over a range 
of values between ​1/100​ and ​100​ times the benchmark. The value of ​ρ​ matches an 
annual interest rate of ​4 percent​.

11 New Jersey and Connecticut locked down a few days earlier, but we assign New York’s lockdown date.
12 See http://www.jobkorea.co.kr/GoodJob/Tip/View?News_No=16696, published May 4, 2020.

http://www.jobkorea.co.kr/GoodJob/Tip/View?News_No=16696
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Matching Function and Transmission Rate.—We assume that, given the num-
ber of individuals interacting in a location, contagion is more prevalent in denser 
districts:13

(17)	 ​​β​j​​  = ​   β _ are​a​j​​ ​.​

13 This adjustment ensures that the aggregate infections are invariant to spatial aggregation. With ​S​ susceptible 
and ​I​ infected individuals equally divided among ​J​ locations, assuming away spatial interactions, the aggregate 
number of infections is ​SI/J​, so that slicing a territory reduces infections. Normalizing by area yields instead ​SI​, 
which is invariant to ​J​.

Table 1—Summary of Parameter Values

Parameter Definition Value Source

Disease dynamics
​​γ​I​​​ Exposed to infected rate {1/5.1, 1/4.2} Ferguson et al. (2020),  

Sanche et al. (2020)
​​γ​R​​​ Infected to recovered rate {1/18, 1/10} Wang et al. (2020)
​​γ​D​​​ Infected to death rate {0.0005, 0.0002} 

(see table notes)
Ferguson et al. (2020), 
Hall, Jones, and Klenow (2020)

​ζ​ Percent asymptomatic {0.363, 0.181} Alamian et al. (2019)

Matching function
​β​ Transmission rate Daegu: 1.58 Case data and commuting

 (see Section IIC)  (benchmark) Seoul: 4.17
NYM: 0.55
Daegu: 0.56

​β​ (shopping diffusion) Transmission rate Seoul: 1.80
  (with shopping) NYM: 0.55

Daegu: 0.16

​​β ̃ ​​ (shopping diffusion) Relative transmission Seoul: 0.42
  via shopping NYM: 0.00

Trade model
​​κ​1​​​ Distance-trade cost elast. 0.38 Credit card expenditures 

(see Section IIC)​​κ​0​​​ Scale of trade costs Daegu: 0.64
Seoul: 1.13
NYM: 0.58

​ε​ Lockdown–trade cost elast. 0.11

​σ​ Demand elasticity 5 Ramondo, Rodríguez-Clare, and 
Saborío-Rodríguez (2016)

Other parameters
​​δ​I​​​ Telecommuting rate Korea: 0.62 http://www.jobkorea.co.kr/ 

GoodJob/Tip/
View?News_No=16696

NYM: 0.46 Dingel and Neiman (2020)
​v​ Probability of vaccine 1/(365 × 1.5) Expected time of 1.5 years until 

vaccine

​ω​ Value of life {1/100, …,100} ×
(2.6mn − PDV of wages)

Hall, Jones, and Klenow (2020)

​ρ​ Discount rate 0.04/365

Notes: The table reports the parameters in the benchmark calibration and robustness exercises. The rate ​​γ​D​​​ is cho-
sen such that the infection fatality ratio ​0.009​ equals ​​γ​D​​/​(​γ​D​​ + ​γ​R​​)​​, and the robustness uses ​0.003​ instead. See 
Section IIC for more details.

http://www.jobkorea.co.kr/GoodJob/Tip/View?News_No=16696
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We set ​β​ to match the model-based infection dynamics to COVID-19 case data. 
Using (3) and (16), the change in the number of susceptible agents is

(18)� ​ΔS​(i, t)​ = − βζ​
[
​∑ 

j
​ 
 
 ​​ ​   1 _ are​a​j​​ ​  χ​(i, j, t)​λ​(i, j)​​∑ 

i′
​ 
 
 ​​  χ​(​i ′ ​, j, t)​λ​(​i ′ ​, j)​I​(​i ′ ​, t)​

]
​S​(i, t)​ + ε​(i, t)​,​

where ​λ​(i, j)​​ is the pre-pandemic fraction of residents from ​i​ commuting to ​j​ at 
time ​t​, ​χ​(i, j, t)​​ is the commuting from ​i​ to ​j​ at time ​t​ relative to pre-pandemic flows, 
and ​ε​(i, t)​​ accounts for measurement error and other forces driving infections. We 
observe ​λ​(i, j, t)​χ​(i, j, t)​​ for Seoul and the NYM, and for Daegu we apply the changes 
in entries and exits to the pre-pandemic flows to construct its bilateral flows. Note,  
​S​(i, t)​​ and ​I​(i, t)​​ are recovered from data on new infections, the calibrated transition 
rates, and the laws of motion (12) to (14). Given the asymptomatic rate ​ζ​, we set ​β​ 
to minimize the sum of square errors ​​∑ i​ 

  ​​ ​∑ t​   ​​ ε ​​(i, t)​​​ 2​​.
To mitigate concerns that the new-cases data is imprecise and driven by test-

ing, we start the estimation ten days after the peak in new cases in each city. This 
approach is consistent with the assumptions that the data on new cases became more 
precise in the latest periods. The results are very similar if we start the estimation at 
the peak.

Online Appendix Figure A.2 shows that the model replicates well the average 
number of new cases after the peak in the data and implies a fair amount of dis-
persion in the dynamics across locations. For the first week after patient zero, the 
estimation implies a city-level reproduction number (the number of new infections 
per infected individual) of 1.32 in Seoul, 1.32 in Daegu, and 2.94 in the NYM. 
These numbers are in line with existing estimates—for example, Shim et al. (2020) 
estimate 1.5 in Korea, and Fernández-Villaverde and Jones (2020) estimate 2.5 in 
New York.14

Trade Model Parameters.—The bottom right panel of Figure  1 plots ​s​(i, i, t)​​,  
the share of within-district expenditures, relative to the pre-pandemic levels. 
Same-district spending shares increase at the time of the lockdown, suggesting that 
shopping costs increased.

This evidence motivates a specification of trade costs as a function of geographic 
frictions and lockdown:

(19)	 ​τ ​(i, j, t)​  = ​ κ​0​​ distance ​​(i, j)​​​ ​κ​1​​​ χ ​​(i, j, t)​​​ −ε​.​

From (8), adding a time subscript and an error term ϵ, we obtain a gravity equation:

(20)	 ​ln X​(i, j, t)​  =  ψ​( j)​ + η​(i)​ − ​(σ − 1)​ ​κ​1​​ ln​(distance​(i, j)​)​ 

	 + ​(σ − 1)​εln​(χ​(i, j, t)​)​ + ϵ​(i, j, t)​​,

14 The reproduction number is the largest eigenvalue of the matrix ​diag​(S​(t)​)​ ​H​ S​ ′ ​ diag​(β)​ ​H​I​​​/​​(​γ​D​​ + ​γ​R​​)​​ 
(Diekmann, Heesterbeek, and Metz 1990). Table 1 reports the estimates of ​β​.
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where ​X​(i, j, t)​​ are district ​j​’s expenditures in goods and services from ​i​ at time ​t​, 
and ​ψ​( j)​​ and ​η​(i)​​ are destination and origin fixed effects.15

Using the credit card spending data from Seoul, we estimate ​​(σ − 1)​​κ​1​​  =  ​1.53 
(SE 0.066) and ​​(σ − 1)​ε  =  ​0.45 (SE 0.067).16 We set ​σ  =  5​ (Ramondo, 
Rodríguez-Clare, and Saborío-Rodríguez 2016) to recover ​​κ​1​​​ and ​ε​. For each city, 
we set ​z​(i)​​ and the scale parameter ​​κ​0​​​ to match the pre-pandemic data on wages ​w​
( j)​​ and the fraction of same-district expenditures in total expenditures, respectively. 
The latter is 55 percent in the Seoul credit card data and assumed to be the same 
across cities.

III.  Optimal Spatial Lockdowns

A. Centrality and Optimal Lockdown

We implement the model in each city using the case distribution at the lockdown 
date as the initial condition. The left panel of Figure 2 shows eigenvector centrality 
by location, which captures the potential by location to diffuse COVID-19 under 
no lockdown.17 The right panel shows the fraction of commuting inflows that are 
optimally shut down.

We find similar qualitative patterns in the NYM and Daegu. The most central 
locations first experience a strong lockdown, of up to 60 percent in New York and 
70 percent in Daegu. In these locations the lockdown is only partially relaxed over 
three to six months. In the NYM, other locations also exhibit an early lockdown, 
but only Manhattan remains closed for a long time. In Daegu, all central locations 
exhibit strict lockdown for a long time.

 These patterns contrast with Seoul, where despite the limited spread the plan-
ner imposes a long-lasting lockdown to restrain the disease. The planner first locks 
down a few peripheral locations but maintains economic activity. After the disease 
has spread, the lockdown intensifies across more central locations.

The results demonstrate that the optimal strategies over time and space depend on 
the full geography of commute patterns and real income as well as the initial viral 
spread. When the spread is sufficiently large, the planner first places more weight 
on shutting down locations that are perceived as transmission hubs, even if they are 
the main sources of real income. When it is not, those locations are first spared. In 
either case, the policy maintains a considerable steady-state lockdown to avoid a 
reemergence of the disease.18

15 Online Appendix Figure A.1 reports positive correlations between commuting and expenditures relative to the 
pre-pandemic levels, confirming a negative impact of lockdown on shopping.

16 The results are similar if same-district expenditures are excluded. Monte, Redding, and Rossi-Hansberg 
(2018) estimate a distance elasticity of 1.29 across Commodity Flow Survey regions.

17 This is the eigenvector associated with the largest eigenvalue of the matrix ​diag​(S​(0)​)​ ​H​ S​ ′ ​ ​H​I​​​, weighted by the 
location-specific transmission rate ​​β​j​​​.

18 The optimal lockdowns are further visualized in online Appendix Figure A.3. The figure shows the lockdown 
every 30 days. The initial lockdown pattern radiates from geographically central locations and weakens over time.
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B. Pareto Frontier: Uniform versus Spatially Optimal Lockdown

We compute a “Pareto” frontier describing the trade-off between cases and 
economic costs. We solve the optimal lockdown for values of life ​ω​ ranging 
between ​1/100​ and ​100​ times the benchmark. To demonstrate the importance of 
spatially targeted policies, we also implement optimal uniform lockdown paths, 
restricted to be constant over space, or optimal lockdowns that vary only by origin 

Figure 2. Centrality of Commuting Locations and Optimal Policies

Notes: The left panels denote the (log) centrality of a location (see footnote 17), normalized so that the most cen-
tral location is one. The right panels plot the optimal policies over time for each location in the network. The color 
of the line represents the centrality of the location in the network. The three most central locations in the network 
are indicated in the legend.
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and destination. Figure 3 plots cumulative COVID-19 cases against the economic 
loss since the pre-pandemic period at the last period of our data (April 30) across 
these values of ​ω​, along with the actual economic costs and cases in the estimated 
model.

We find large gains from implementing optimal spatial lockdown. Compared to 
uniform optimization, given the actual number of cases, spatially targeted lockdown 
leads to 20 percent, 32 percent, and 58 percent lower economic costs in Daegu, 
Seoul, and the NYM, respectively. In the NYM and Daegu, the gap in economic 
cost between uniform and optimal policies grows for higher values of life.

The actual economic costs and cumulative cases were far from the optimal but 
close to the space-blind optimal policy. Under spatial targeting, the same number of 
cumulative cases could have been reached at 19 percent, 27 percent, and 37 percent 

Figure 3. Pareto Frontiers

Notes: The figures plot the cumulative number of new cases (y-axis, log scale) and the average real income lost per 
day between the date of the first confirmed case (see online Appendix Table A.1) and April 30, 2020, for parametri-
zations of the value of life (​ω​) ranging from 1/100 to 100 times the benchmark, in the optimal lockdown with space 
and time variation (“bilateral”), in the spatially uniform optimal solution with time variation only (“uniform,” the 
same lockdown across all locations), and in the optimal solution where only origin or destination can be closed (“by 
origin” and “by destination,” respectively). The green triangle shows the case count and real income lost implied by 
the estimated model on April 30, 2020.
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lower economic costs in Daegu, Seoul, and the NYM, respectively. The gains from 
optimal lockdowns by destination are larger than by origin and very close to the 
benchmark, suggesting that business lockdowns may be enough to reap the benefits 
of spatial targeting.
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Figure 4. Changes in Commuting Flows: Optimal and Observed

Notes: In the left panels, the dashed black line shows the aggregate commuting flows in each city starting from the 
date of the first confirmed case in each city. The solid and circled blue lines show the aggregate commuting flows 
implied by the optimal spatial policy. In the right panels, optimal and observed commuting responses are divided by 
the top three central locations (darker shade) and the other locations.



519FAJGELBAUM ET AL.: OPTIMAL LOCKDOWN IN A COMMUTING NETWORKVOL. 3 NO. 4

C. Optimal and Observed Commuting Reductions

We now compare observed reductions in commuting with the model’s opti-
mal flows. The left panel of Figure  4 shows aggregate commuting relative to 
pre-pandemic values in the data and under optimal lockdown. Since the optimal 
policies are implemented at the time of lockdown, they are shown as a flat line until 
that time. The right panel shows inflows for high- and low-centrality locations. In 
Daegu and the NYM, the actual city-level reductions in commuting were not very 
far from the optimal benchmark. In New York, a 40 percent drop took place during 
the time leading up to the lockdown. In the model, the optimal lockdown in that 
period is about 20 percent. We find an even closer pattern in Daegu, where the opti-
mal lockdown is weakly relaxed over time, as in the data. However, the most central 
(peripheral) locations of both the NYM and Daegu exhibited a weaker (stronger) 
reduction in commuting than the optimal. In Seoul, the actual reductions were much 
stronger than at the optimal in all locations. These differences explain why the esti-
mated economic costs from actual commuting responses were larger than the spa-
tially optimal ones, as in Figure 3.

D. Alternative Specifications

Online Appendix Figure A.5 shows that spatial lockdown patterns are robust to 
the alternative parametrizations described in the previous section. Figure A.6 shows 
that for a large shock affecting 1 percent of the population, or for a value of life 
equal to ​100​ times the benchmark, the qualitative patterns in Seoul resemble those 
in Daegu and the NYM.

We also implement a case where the virus diffuses through shopping. Agents 
from ​i​ now interact with other agents in location ​j​ at rate ​χ​(i, j, t)​λ​(i, j)​ + 
​β ̃ ​q​(i, j, t, χ​(t)​)​​, where ​q​(i, j, ⋅ , ⋅ )​​ is their per capita consumption of goods from ​j​ and 
​​β ̃ ​​ is the intensity of diffusion through shopping relative to commuting. Table  1 
shows the parameter estimates, and online Appendix Figures A.7 to A.9 replicate the 
lockdown policies and Pareto frontier in this case. Compared to the benchmark, the 
lockdown is weaker in Daegu and Seoul due to the smaller estimate of ​β​. However, 
the qualitative spatial patterns of lockdown and the magnitude of the gains from 
targeted spatial lockdown implied by the Pareto frontier are similar.

IV.  Conclusion

Our framework could be applied to other spatial scales such as across cities, states, 
or countries and to study the optimal spatial deployment of a vaccine in limited sup-
ply. Future work could also relax the assumption that worker-job matches are kept 
constant by allowing for potentially sluggish job reallocations as lockdowns unwind.
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