Optimal Lockdown in a Commuting Network

Pablo D. Fajgelbaum Amit Khandelwal Wookun Kim Cristiano Mantovani Edouard Schaal

UCLA/NBER, Columbia/NBER, SMU, Pompeu Fabra, CREI/CEPR

NBER ITI Covid Session, 07/08/2020

Introduction

- ullet Manhattan has as many daily commuters as residents, ${\sim}1.6m$ people
 - Two months after lockdown, commutes down 49%
 - Was this reduction too large or not large enough?
- Lockdowns were fairly uniform within cities and across bordering U.S. states (avg diff of 4 days)
 - But economic activity and potential for spread is not uniform
 - Are there significant losses from spatially uniform or uncoordinated lockdown?

This Paper

- Optimal dynamic lockdown in a commuting network to fight a pandemic
- Framework integrates:
 - Standard trade model (Armington)
 - Standard spatial epidemiology model
- Estimated with real-time commuting and credit-card expenditure data
 - Korea (Daegu and Seoul) and New York Metro
- Questions:
 - What are the optimal lockdown patterns over time and space?
 - How large are the benefits from optimal spatial targeting?
 - How do observed commuting reductions compare with optimal?

Data

Korea

- Seoul (largest city, 25 districts) and Daegu (largest outbreak, 8 districts)
- Real-time commuting data (individual transport cards, Subway entry and exits)
- Universe of credit-card transactions at physical shops from one of Korea's top-3 banks
- Wages and population (National tax records)
- New York Metro (20 counties)
 - Cellphone mobility data (SafeGraph)
 - Wages and population (LEHD and Census)
- Estimate:
 - Decline in commuting relative to pre-pandemic period
 - Virus transmission rate using spatial structure of the model
 - Within-city trade frictions from credit card expenditure data

Model

Planning problem

$$W = \max_{\boldsymbol{\chi}(t)} \int_{0}^{\infty} e^{-(r+\nu)t} \sum_{j} \left[U(j,t,\boldsymbol{\chi}(t)) + \frac{\nu}{r} \bar{U}(j,t) - \omega \gamma_{D} I(j,t) \right] dt$$

- $\mathbf{x}(t) = \text{matrix}$ with fraction of commuting flows (=jobs) that can operate
- $U(j, t, \chi(t)) =$ general-equilibrium outcome of the trade model
- SEIR spatial model determines flows Susceptible, Exposed, Infected, Recovered
- % change in susceptible population:

$$\frac{\dot{S}(i,t)}{S(i,t)} = -\sum_{j} \beta_{j} \lambda(i,j) \chi(i,j,t) \left[\zeta \sum_{i'} I(i',t) \lambda(i',j) \chi(i',j,t) \right]$$

- $\lambda(i, j)$ = pre-pandemic commute flows; ζ = fraction asymptomatic
- Estimate $\beta_j = \frac{\beta}{\text{area}_j}$ from changes in flows and cases across locations
- Labor supply to location *j*:

$$\sum_{u=S,E,I,R} \left[\chi\left(i,j,t\right) + \left(1 - \chi\left(i,j,t\right)\right) \delta_u \right] \lambda\left(i,j\right) N_u\left(i,t\right)$$

• $\delta_u = \text{fraction of telecommuters}$

Commute Responses and Disease Spread

Seoul

Centrality and Optimal Lockdown

Seoul

"Pareto" Frontier: Cases versus Income

Cumulative cases and lost income (across values of life) by April 30

▶ Seoul

Optimal and Observed Changes in Commuting Flows

Conclusion

- Integrate spatial epidemiology and trade model, estimated on 3 cities
- Results
 - **()** Optimal spatial lockdowns have much smaller economic costs than uniform lockdowns
 - Not easily approximated by simple centrality-based rules
 - Ommute responses were too weak in NYM's and Daegu's central nodes (too strong across Seoul)
- Possible extensions
 - Other spatial scales
 - Optimal deployment of vaccine
 - Disease transmission through shopping/leisure consumption
 - Endogenous job reallocations

Commute Responses and Disease Spread: Seoul

Seoul

% Change Commute Flows

Centrality and Optimal Lockdown: Seoul

🔺 return

"Pareto" Frontier: Seoul

✓ return

Optimal and Observed Changes in Commuting Flows: Seoul

◀ return

Parameters

Parameter	Definition	Value	Source
Disease Dynamics			
γ_I	Exposed to Infected Rate	{1/5.1, 1/4.2}	Ferguson et al. (2020), Sanche et al. (2020)
γ_R	Infected to Recovered Rate	{1/18, 1/10}	Wang et al. (2020)
γ_D	Infected to Death Rate	{0.0005, 0.0002} (see Table note)	Ferguson et al. (2020), Hall et al. (2020)
51	% asymptomatic	{0.545, 0.272}	Alamian et al. (2019)
Matching Function			
		Daegu: 0.58	
β	Transmission Rate	Seoul: 1.58	Case Data and Commuting
		NYM: 0.16	
Trade Model			
κ_1	Distance-Trade Cost Elasticity	0.37	
ĸo	Scale of Trade Costs	Daegu: 0.69	Credit Card Expenditures
		Seoul: 1.23	
		NYM: 0.62	
σ	Demand Elasticity	5	Ramondo et al. (2016)
Other Parameters			
δ_I	Telecommuting Rate	Korea: 0.62	Job Korea
		NYM: 0.46	Dingel and Neiman (2020)
v	Probability of Vaccine	1/(365*1.5)	Expected time of 1.5 years until vaccine
ω	Value of Life	{1/100,,100}*10 Million USD	
ρ	Discount rate	0.04/365	

References I

- Alamian, A., S. Pourbakhsh, A. Shoushtari, and H. Keivanfar (2019). Seroprevalence investigation of newcastle disease in rural poultries of the Northern Provinces (Golestan, Gilan, and Mazandaran) of Iran. Archives of Razi Institute 74(4), 365–373.
- Dingel, J. I. and B. Neiman (2020). How many jobs can be done at home? Technical report, NBER Working Paper 26948.
- Ferguson, N., D. Laydon, G. Nedjati Gilani, N. Imai, K. Ainslie, M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunuba Perez, G. Cuomo-Dannenburg, et al. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Technical report, Imperial College.
- Hall, R. E., C. I. Jones, and P. J. Klenow (2020). Trading off consumption and COVID-19 deaths. Technical report, NBER Working Paper 27340.
- Ramondo, N., A. Rodríguez-Clare, and M. Saborío-Rodríguez (2016). Trade, domestic frictions, and scale effects. American Economic Review 106(10), 3159–84.
- Sanche, S., Y. T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, and R. Ke (2020). Early release-high contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. *Emerging Infectious Diseases 26*, 1470–1477.
- Wang, H., Z. Wang, Y. Dong, R. Chang, C. Xu, X. Yu, S. Zhang, L. Tsamlag, M. Shang, J. Huang, et al. (2020). Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China. Cell discovery 6(1), 1–8.