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Introduction

Manhattan has as many daily commuters as residents, ∼1.6m people

I Two months after lockdown, commutes down 49%

I Was this reduction too large or not large enough?

Lockdowns were fairly uniform within cities and across bordering U.S. states (avg

diff of 4 days)

I But economic activity and potential for spread is not uniform

I Are there significant losses from spatially uniform or uncoordinated lockdown?



This Paper

Optimal dynamic lockdown in a commuting network to fight a pandemic

Framework integrates:

I Standard trade model (Armington)

I Standard spatial epidemiology model

Estimated with real-time commuting and credit-card expenditure data

I Korea (Daegu and Seoul) and New York Metro

Questions:

I What are the optimal lockdown patterns over time and space?

I How large are the benefits from optimal spatial targeting?

I How do observed commuting reductions compare with optimal?



Data

Korea

I Seoul (largest city, 25 districts) and Daegu (largest outbreak, 8 districts)

I Real-time commuting data (individual transport cards, Subway entry and exits)

I Universe of credit-card transactions at physical shops from one of Korea’s top-3 banks

I Wages and population (National tax records)

New York Metro (20 counties)

I Cellphone mobility data (SafeGraph)

I Wages and population (LEHD and Census)

Estimate:

I Decline in commuting relative to pre-pandemic period

I Virus transmission rate using spatial structure of the model

I Within-city trade frictions from credit card expenditure data



Model

Planning problem

W = max
χ(t)

∫ ∞
0

e−(r+ν)t
∑
j

[
U (j , t,χ (t)) +

ν

r
Ū (j , t) − ωγD I (j , t)

]
dt

I χ (t) = matrix with fraction of commuting flows (=jobs) that can operate

I U (j, t,χ (t)) = general-equilibrium outcome of the trade model

I SEIR spatial model determines flows Susceptible, Exposed, Infected, Recovered

% change in susceptible population:

Ṡ (i , t)

S (i , t)
= −

∑
j

βjλ (i , j)χ (i , j , t)

[
ζ
∑
i′

I
(
i ′, t
)
λ
(
i ′, j
)
χ
(
i ′, j , t

)]

I λ (i, j)= pre-pandemic commute flows; ζ= fraction asymptomatic

I Estimate βj = β
areaj

from changes in flows and cases across locations

Labor supply to location j :∑
u=S,E ,I ,R

[χ (i , j , t) + (1 − χ (i , j , t)) δu ]λ (i , j)Nu (i , t)

I δu = fraction of telecommuters

parameters



Commute Responses and Disease Spread
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Centrality and Optimal Lockdown
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“Pareto” Frontier: Cases versus Income

Cumulative cases and lost income (across values of life) by April 30

Daegu NY Metro

Seoul



Optimal and Observed Changes in Commuting Flows
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Conclusion

Integrate spatial epidemiology and trade model, estimated on 3 cities

Results

1 Optimal spatial lockdowns have much smaller economic costs than uniform lockdowns

2 Not easily approximated by simple centrality-based rules

3 Commute responses were too weak in NYM’s and Daegu’s central nodes (too strong

across Seoul)

Possible extensions

I Other spatial scales

I Optimal deployment of vaccine

I Disease transmission through shopping/leisure consumption

I Endogenous job reallocations



Commute Responses and Disease Spread: Seoul
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Centrality and Optimal Lockdown: Seoul
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“Pareto” Frontier: Seoul
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Optimal and Observed Changes in Commuting Flows: Seoul
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Parameters

Parameter Definition Value Source

Disease Dynamics

γI Exposed to Infected Rate {1/5.1, 1/4.2} Ferguson et al. (2020), Sanche et al. (2020)

γR Infected to Recovered Rate {1/18, 1/10} Wang et al. (2020)

γD Infected to Death Rate {0.0005, 0.0002} (see Table note) Ferguson et al. (2020), Hall et al. (2020)

ζI % asymptomatic {0.545, 0.272} Alamian et al. (2019)

Matching Function

β Transmission Rate

Daegu: 0.58

Case Data and CommutingSeoul: 1.58

NYM: 0.16

Trade Model

κ1 Distance-Trade Cost Elasticity 0.37

Credit Card Expenditures
κ0 Scale of Trade Costs

Daegu: 0.69

Seoul: 1.23

NYM: 0.62

σ Demand Elasticity 5 Ramondo et al. (2016)

Other Parameters

δI Telecommuting Rate
Korea: 0.62 Job Korea

NYM: 0.46 Dingel and Neiman (2020)

v Probability of Vaccine 1/(365*1.5) Expected time of 1.5 years until vaccine

ω Value of Life {1/100,..,100}*10 Million USD

ρ Discount rate 0.04/365

return

http://www.jobkorea.co.kr/GoodJob/Tip/View?News_No=16696
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