# Prices, Markups and Trade Reform

Jan De Loecker, Penny Goldberg, Amit Khandelwal, Nina Pavcnik

Princeton, Yale, Columbia and Dartmouth

October 2015

#### Motivation

- Policy distortions contribute to low aggregate productivity in developing countries [Bloom & Van Reenan 2007, Hseih & Klenow 2009]
  - ► Trade barriers prevent efficient allocation of resources [Melitz 2003]
- Trade liberalizations could affect the distribution of firm markups
  - Markup adjustments determine not only gains from trade, but how gains are distributed among producers and consumers
- We develop a method to estimate jointly markups and marginal costs from firm-level data that contain prices
  - Examine how prices, markups & marginal costs respond to tariff declines
- Use India's liberalization episode to examine firm responses to:
  - Competitive pressures through output tariff declines
  - 2 Lowering taxes on imported inputs through input tariff declines



#### Motivation

- Convention wisdom from the literature is that trade liberalization:
  - Increases productivity (reallocation and within-firm improvements)
  - Reduces markups because of more competition
- Empirical findings have caveats if only firm revenues are observed
  - ▶ Difficult to separate productivity changes from markup changes using revenue data [De Loecker 2011, De Loecker & Warsynski 2012]
- Analysis of markups has typically focused only on output tariff reductions [Levinsohn 1993, Harrison 1994]
- Trade reforms also reduce costs for producers
  - Markup adjustments depend on pass-through of cost savings to consumers

#### Contributions

- Measurement: Exploit price and quantity data to estimate production functions
- Methodology: Unified framework to estimate distribution of markups and marginal costs
  - ▶ Does not require *ex ante* assumptions on market structure/demand
  - Address issues that arise with quantity-based production functions (multi-product firms, input price variation)
- Omprehensive Trade Reform: Analyze how prices, markups and marginal costs respond to output and input tariff changes

# Our Approach

 Markups are derived from cost minimization [Hall 1986, De Loecker & Warsynski 2012]

$$\mathsf{Markup} = \frac{\mathsf{output} \ \mathsf{elasticity} \ \mathsf{of} \ \mathsf{an} \ \mathsf{input}}{\mathsf{share} \ \mathsf{of} \ \mathsf{input's} \ \mathsf{expenditure} \ \mathsf{in} \ \mathsf{total} \ \mathsf{revenue}}$$

- Use markup estimates to compute marginal costs = price/markup
- Examine how these variables respond to liberalization

### Preview of Findings

- We find correlations consistent with multi-product firm models [e.g., Mayer et al. 2011]
  - Markups (costs) are higher (lower) in more productive firms and on firms' core products
  - Incomplete pass-through of costs to prices
- We find evidence that trade reform lowers prices, but prices do not fall as much as costs
  - Firms offset cost savings by raising markups
- Punchlines:
  - ▶ A lot of markup variation across firms and over time
  - Pass-through is incomplete
  - Removing input tariff distortions improves efficiency, but producers do not pass-through the full gains
- However, India's liberalization did result in new domestic varieties [Goldberg et al 2010]



#### Related Literature

#### Estimating Production Functions

▶ Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al. (2006), De Loecker (2011)

#### Trade and Markups

- ► Levinsohn (1993), Harrison (1994)
- ▶ Bernard et al (2003), Melitz and Ottaviano (2008), Feenstra and Weinstein (2010), Mayer et al (2011), Edmonds et al (2011), Arkolakis et al (2012), Dhingra and Morrow (2012)

#### Trade and Productivity

► Melitz (2003), Pavcnik (2003), Bernard et al (2003), Amiti and Konings (2007), Topalova and Khandelwal (2011), etc.

#### Outline of Talk

- India's Trade Liberalization and Data
- Methodology:
  - Deriving Markups and Costs
  - Identification and Estimation of Production Functions
- Results
  - Markup and Marginal Cost Patterns
  - ► Impact of Trade Reform
- Conclusion

#### India's Trade Liberalization and Data

- After a balance of payments crisis, India implements structural reforms and slash tariffs from  $\sim 90\%$  in 1987 to  $\sim 30\%$  by 1997
- Tariff changes were unanticipated and uncorrelated with pre-reform industry and firm characteristics until 1997 [Topalova & Khandelwal 2011]
  - Imports of intermediates grows much faster than other types of products
- Prowess data from 1989-2003 covers the medium/large firms [Goldberg et al. 2009, 2010]
  - ▶ Detailed information about product mix (sales, quantities) over time
  - Not suited for studying entry/exit
  - ► We have ~1,500 products and ~4,000 firms, roughly 40% of firms produce multiple products

#### Outline of Talk

- India's Trade Liberalization and Data
- Methodology:
  - Deriving Markups and Costs
  - Identification and Estimation of Production Functions
- Results
  - Markup and Marginal Cost Patterns
  - Impact of Trade Reform
- Conclusion

# **Empirical Framework**

[Focus on single-product firms for the moment]

Production function for firm f

$$Q_{ft} = F_t(\mathbf{X}_{ft}) \exp(\omega_{ft}),$$

V variable inputs (materials) and  ${\it K}$  dynamic inputs (capital, labor), and  $\omega_{\it ft}$  is firm-specific TFP

Minimize costs of variable input(s), conditioning on dynamic inputs

$$L(\mathbf{V}_{\mathrm{ft}}, \mathbf{K}_{\mathrm{ft}}, \lambda_{\mathrm{ft}}) = \sum_{v=1}^{V} P_{\mathrm{ft}}^{v} V_{\mathrm{ft}}^{v} + \mathbf{r}_{\mathrm{ft}} \mathbf{K}_{\mathrm{ft}} + \lambda_{\mathrm{ft}} \left[ Q_{\mathrm{ft}} - Q_{\mathrm{ft}} (\mathbf{V}_{\mathrm{ft}}, \mathbf{K}_{\mathrm{ft}}, \omega_{\mathrm{ft}}) \right]$$

## **Empirical Framework**

[Focus on single-product firms for the moment]

Production function for firm f

$$Q_{ft} = F_t(\mathbf{X}_{ft}) \exp(\omega_{ft}),$$

V variable inputs (materials) and  $\textbf{\textit{K}}$  dynamic inputs (capital, labor), and  $\omega_{\it ft}$  is firm-specific TFP

Minimize costs of variable input(s), conditioning on dynamic inputs

$$L(\mathbf{V}_{ft}, \mathbf{K}_{ft}, \lambda_{ft}) = \sum_{v=1}^{V} P_{ft}^{v} V_{ft}^{v} + \mathbf{r}_{ft} \mathbf{K}_{ft} + \lambda_{ft} \left[ Q_{ft} - Q_{ft} (\mathbf{V}_{ft}, \mathbf{K}_{ft}, \omega_{ft}) \right]$$

• The marginal cost of production (for given level output) is  $\lambda_{\it ft}$  since  $\frac{\partial L_{\it ft}}{\partial Q_{\it ft}} = \lambda_{\it ft}$ 

$$\frac{\partial L}{\partial V_{\rm ff}^{\rm v}} = P_{\rm ff}^{\rm v} - \lambda_{\rm ft} \frac{\partial Q_{\rm ft}(.)}{\partial V_{\rm ff}^{\rm v}} = 0$$

• The marginal cost of production (for given level output) is  $\lambda_{ft}$  since  $\frac{\partial L_{ft}}{\partial \Omega_{\Delta}} = \lambda_{ft}$ 

▶ Take FOCs

$$\frac{\partial L}{\partial V_{\rm ft}^{\rm v}} = P_{\rm ft}^{\rm v} - \lambda_{\rm ft} \frac{\partial Q_{\rm ft}(.)}{\partial V_{\rm ft}^{\rm v}} = 0$$

$$\frac{\partial Q_{ft}(.)}{\partial V_{ft}^{\prime}} \frac{V_{ft}^{\prime}}{Q_{ft}} = \frac{1}{\lambda_{ft}} \frac{P_{ft}^{\prime} V_{ft}^{\prime}}{Q_{ft}}$$

- The marginal cost of production (for given level output) is  $\lambda_{ft}$  since  $\frac{\partial L_{ft}}{\partial \Omega_a} = \lambda_{ft}$ 
  - Take FOCs

$$\frac{\partial L}{\partial V_{\rm ft}^{\rm v}} = P_{\rm ft}^{\rm v} - \lambda_{\rm ft} \frac{\partial Q_{\rm ft}(.)}{\partial V_{\rm ft}^{\rm v}} = 0$$

$$\frac{\partial Q_{ft}(.)}{\partial V_{ft}'} \frac{V_{ft}'}{Q_{ft}} = \frac{1}{\lambda_{ft}} \frac{P_{ft}' V_{ft}'}{Q_{ft}}$$

$$\frac{\partial Q_{\mathrm{ft}}(.)}{\partial V_{\mathrm{ft}}^{\mathrm{v}}} \frac{V_{\mathrm{ft}}^{\mathrm{v}}}{Q_{\mathrm{ft}}} \ = \ \frac{P_{\mathrm{ft}}}{\lambda_{\mathrm{ft}}} \frac{P_{\mathrm{ft}}^{\mathrm{v}} V_{\mathrm{ft}}^{\mathrm{v}}}{P_{\mathrm{ft}} Q_{\mathrm{ft}}}$$

- The marginal cost of production (for given level output) is  $\lambda_{ft}$  since  $\frac{\partial L_{ft}}{\partial Q_{ft}} = \lambda_{ft}$ 
  - ► Take FOCs

$$\frac{\partial L}{\partial V_{\rm ft}^{\rm v}} = P_{\rm ft}^{\rm v} - \lambda_{\rm ft} \frac{\partial Q_{\rm ft}(.)}{\partial V_{\rm ft}^{\rm v}} = 0$$

$$\frac{\partial Q_{ft}(.)}{\partial V_{ft}'} \frac{\frac{V_{ft}'}{Q_{ft}}}{Q_{ft}} = \frac{1}{\lambda_{ft}} \frac{P_{ft}' V_{ft}'}{Q_{ft}}$$

$$\frac{\partial Q_{ft}(.)}{\partial V_{ft}'} \frac{V_{ft}'}{Q_{ft}} = \underbrace{\frac{P_{ft}}{\lambda_{ft}}}_{\text{markup exp. share}} \underbrace{\frac{P_{ft}'V_{ft}'}{P_{ft}Q_{ft}}}_{\text{markup exp. share}}$$

Define markup  $\mu_{\rm ft} \equiv \frac{P_{\rm ft}}{\lambda_{\rm ft}}$ .

• We can re-write markup as:

$$\mu_{\mathsf{ft}} = \frac{\theta_{\mathsf{ft}}^{\mathsf{v}}}{\alpha_{\mathsf{ft}}^{\mathsf{v}}}$$

- Share of input v's expenditure in total sales  $\alpha_{ft}^{V} = \frac{P_{ft}^{V}V_{ft}^{V}}{P_{ft}Q_{ft}}$
- Obtain  $\alpha_{ft}^{V}$  directly from data
- Output elasticity of variable input  $\theta_{ft}^{v} = \frac{\partial Q_{ft}(.)}{\partial V_{ft}^{v}} \frac{V_{ft}^{v}}{Q_{ft}}$ 
  - Obtain  $\theta_{ft}^{v}$  from the production function
- Approach requires one freely adjustable input (materials)
- Allows for adjustment frictions in labor and capital [Besley & Burgess 2004]

# Marginal Costs for Single-Product Firms

- For single-product firms, recovering markups is conceptually straightforward
- Simply need to estimate a production function to obtain output elasticity with respect to materials
- Since we directly observe prices in our data, we can compute marginal costs from estimated markups:

$$MC_{ft} = \frac{P_{ft}}{\mu_{ft}}$$

# Markups for Multi-product Firms (MPFs)

In theory, framework easily applied on products for MPFs

$$\mu_{\mathit{fjt}} = \frac{\theta_{\mathit{fjt}}^{\mathit{v}}}{\alpha_{\mathit{fjt}}^{\mathit{v}}}$$

- In practice, adding the *j* subscript complicates analysis *substantially*:
  - ① We do not observe how inputs are allocated to each product so  $\alpha^{\rm v}_{\it fjt}$  is not observed
  - ② Because of (1), we cannot obtain a consistent estimate of the output elasticity  $(\theta_{fit}^{\nu})$  for MPFs

• Consider estimating a one-factor translog production function

$$q_{fjt} = \beta_I I_{fjt} + \beta_{II} I_{fjt}^2 + \omega_{ft} + \epsilon_{fjt}$$

- We do not observe  $l_{fjt} = \rho_{fjt} + l_{ft}$ , where  $\rho_{fjt}$  is the (log) input allocation
- This means we would estimate:

$$q_{\mathit{fjt}} = \beta_{\mathit{I}} l_{\mathit{ft}} + \beta_{\mathit{II}} l_{\mathit{ft}}^2 + \underbrace{\beta_{\mathit{I}} \rho_{\mathit{fjt}} + \beta_{\mathit{II}} \left(\rho_{\mathit{fjt}}\right)^2 + 2\beta_{\mathit{II}} (\rho_{\mathit{fjt}} l_{\mathit{ft}})}_{\mathsf{unobserved}} + \omega_{\mathit{ft}} + \epsilon_{\mathit{fjt}}$$

- ▶ Unobserved component is correlated with  $l_{ft}$ , resulting in biased  $\beta$ 's
- More generally, we will have

$$q_{fjt} = \mathbf{x}_{ft}\boldsymbol{\beta} + \omega_{ft} + A(\rho_{fjt}, \mathbf{x}_{ft}; \boldsymbol{\beta}) + \epsilon_{fjt}$$

• Consider estimating a one-factor translog production function

$$q_{fjt} = \beta_I I_{fjt} + \beta_{II} I_{fjt}^2 + \omega_{ft} + \epsilon_{fjt}$$

- We do not observe  $I_{fjt} = \rho_{fjt} + I_{ft}$ , where  $\rho_{fjt}$  is the (log) input allocation
- This means we would estimate:

$$q_{\mathit{fjt}} = \beta_{\mathit{I}} I_{\mathit{ft}} + \beta_{\mathit{II}} I_{\mathit{ft}}^{2} + \underbrace{\beta_{\mathit{I}} \rho_{\mathit{fjt}} + \beta_{\mathit{II}} \left(\rho_{\mathit{fjt}}\right)^{2} + 2\beta_{\mathit{II}} \left(\rho_{\mathit{fjt}} I_{\mathit{ft}}\right)}_{\mathsf{unobserved}} + \omega_{\mathit{ft}} + \epsilon_{\mathit{fjt}}$$

- Unobserved component is correlated with  $l_{ft}$ , resulting in biased  $\beta$ 's
- More generally, we will have

$$q_{fjt} = \mathbf{x}_{ft}\boldsymbol{\beta} + \omega_{ft} + A(\rho_{fjt}, \mathbf{x}_{ft}; \boldsymbol{\beta}) + \epsilon_{fjt}$$

Consider estimating a one-factor translog production function

$$q_{fjt} = \beta_I I_{fjt} + \beta_{II} I_{fjt}^2 + \omega_{ft} + \epsilon_{fjt}$$

- We do not observe  $I_{fjt} = \rho_{fjt} + I_{ft}$ , where  $\rho_{fjt}$  is the (log) input allocation
- This means we would estimate:

$$q_{fjt} = \beta_I I_{ft} + \beta_{II} I_{ft}^2 + \underbrace{\beta_{II} \rho_{fjt} + \beta_{II} \left(\rho_{fjt}\right)^2 + 2\beta_{II} \left(\rho_{fjt} I_{ft}\right)}_{\text{unobserved}} + \omega_{ft} + \epsilon_{fjt}$$

- Unobserved component is correlated with  $l_{ft}$ , resulting in biased  $\beta$ 's
- More generally, we will have

$$q_{fjt} = \mathbf{x}_{ft}\boldsymbol{\beta} + \omega_{ft} + A(\rho_{fjt}, \mathbf{x}_{ft}; \boldsymbol{\beta}) + \epsilon_{fjt}$$

• Consider estimating a one-factor translog production function

$$q_{fjt} = \beta_I I_{fjt} + \beta_{II} I_{fjt}^2 + \omega_{ft} + \epsilon_{fjt}$$

- We do not observe  $I_{fjt} = \rho_{fjt} + I_{ft}$ , where  $\rho_{fjt}$  is the (log) input allocation
- This means we would estimate:

$$q_{\mathit{fjt}} = \beta_{\mathit{I}} l_{\mathit{ft}} + \beta_{\mathit{II}} l_{\mathit{ft}}^{2} + \underbrace{\beta_{\mathit{II}} \rho_{\mathit{fjt}} + \beta_{\mathit{II}} \left(\rho_{\mathit{fjt}}\right)^{2} + 2\beta_{\mathit{II}} (\rho_{\mathit{fjt}} l_{\mathit{ft}})}_{\text{unobserved}} + \omega_{\mathit{ft}} + \epsilon_{\mathit{fjt}}$$

- ▶ Unobserved component is correlated with  $I_{ft}$ , resulting in biased  $\beta$ 's
- More generally, we will have

$$q_{fit} = \mathbf{x}_{ft}\mathbf{\beta} + \omega_{ft} + A(\rho_{fit}, \mathbf{x}_{ft}; \mathbf{\beta}) + \epsilon_{fit}$$

#### Outline of Talk

- India's Trade Liberalization and Data
- Methodology:
  - Deriving Markups and Costs
  - Identification and Estimation of Production Functions
- Results
  - Markup and Marginal Cost Patterns
  - ► Impact of Trade Reform
- Conclusion

## Identify Production Function from SPFs

- Production functions are product-specific
  - Production function unaffected by the other products made by the firm
  - Assumption restricts technology synergies across products
  - Avoids assumptions on input allocation
- Approach still allows economies of scope in costs
  - MPFs may face lower fixed costs or lower input prices (needs to be exogenous)
  - ▶ MPFs differ from SPFs in factor-neutral productivity
- Additionally, we:
  - ▶ Estimate a translog, which allows output elasticities to vary by firm size
  - Use an unbalanced sample of SPFs to recover production function
  - Selection correction controls for non-random event that a SPF becomes a MPF [details in paper]
  - ▶ We solve for the unobserved input allocation for MPFs [details in paper]

#### Removal of Price Bias

- We can now focus on estimation of production functions on SPFs
- Estimate translog production function, separately by 2-digit sector

$$q_{ft} = f(\mathbf{x}_{ft}; \boldsymbol{\beta}) + \omega_{ft} + \epsilon_{ft}$$

$$q_{ft} = \beta_{I}I_{ft} + \beta_{II}I_{ft}^{2} + \beta_{k}k_{ft} + \beta_{kk}k_{ft}^{2} + \beta_{m}m_{ft} + \beta_{mm}m_{ft}^{2} + \beta_{Ik}I_{ft}k_{ft}$$
$$+ \beta_{Im}I_{ft}m_{ft} + \beta_{mk}m_{ft}k_{ft} + \beta_{Imk}I_{ft}m_{ft}k_{ft} + \omega_{ft} + \epsilon_{ft}$$

- Literature faces 3 main challenges to identify  $\beta$ :
- Output price bias [De Loecker 2011]
  - ▶ Exploit quantities, rather than revenue, to estimate production functions
- ullet Simultaneity bias between  $m{x}_{\it{ft}}$  and  $\omega_{\it{ft}}$  [Olley & Pakes 1996, Levinsohn & Petrin 2003, Ackerbeg et al. 2006]
- Input price bias
  - Only observe input expenditures, and not input quantities



## Simultaneity Bias

- Deal with simultaneity bias using the well-known proxy approach [Olley & Pakes 1996, Levinsohn & Petrin 2003, Ackerberg et al. 2006]
- The key departures from Olley & Pakes (1996):
  - Proxy for productivity using materials input demand [Levinsohn & Petrin 2003]
  - Allow input and output tariffs to influence the productivity law of motion [De Loecker 2011]
  - ► Treat labor as a dynamic input, like capital (consistent with Indian labor laws) [Ackerberg et al. 2006]

### Input Price Bias

- Estimating physical production function introduces an additional bias from observing input expenditures
- Address this issue by introducing an additional proxies for input price variation in control function
  - Quality is the key source of input price variation
  - Controls includes output prices, market shares and input tariffs [Khandelwal 2010]
  - ► Intuition is that output price variation reflects input price variation [Kugler and Verhoogen 2011]
  - Underlying theory is O-Ring production (complementarity in input qualities to product output quality)

# Productivity, Markups and Costs

- ullet Estimate translog eta's on SPFs for 14 sectors
- For SPFs, we compute the materials output elasticity:

$$\widehat{\theta}_{\rm ft}^{M} = \widehat{\beta}_{\rm m} + 2\widehat{\beta}_{\rm mm} m_{\rm ft} + \widehat{\beta}_{\rm Im} l_{\rm ft} + \widehat{\beta}_{\rm mk} k_{\rm ft} + \widehat{\beta}_{\rm Imk} l_{\rm ft} k_{\rm ft}$$

Compute productivity, markups and marginal costs:

$$\hat{\omega}_{ft} = E(q_{ft}) - f(\tilde{\mathbf{x}}_{ft}; \hat{\boldsymbol{\beta}})$$

$$\hat{\mu}_{ft} = \hat{\theta}_{ft}^{M} \left(\frac{P_{ft}^{M} V_{ft}^{M}}{P_{ft} Q_{ft}}\right)^{-1}$$

$$\widehat{MC}_{ft} = \frac{P_{ft}}{\hat{\mu}_{ft}}$$

- ▶ We solve for the input allocations for MPFs
- ► Then recover materials output elasticity, productivity, markups and marginal costs Comple



# Productivity, Markups and Costs

- ullet Estimate translog eta's on SPFs for 14 sectors
- For SPFs, we compute the materials output elasticity:

$$\widehat{\theta}_{\rm ft}^{M} = \widehat{\beta}_{\rm m} + 2\widehat{\beta}_{\rm mm} m_{\rm ft} + \widehat{\beta}_{\rm Im} l_{\rm ft} + \widehat{\beta}_{\rm mk} k_{\rm ft} + \widehat{\beta}_{\rm Imk} l_{\rm ft} k_{\rm ft}$$

Compute productivity, markups and marginal costs:

$$\hat{\omega}_{ft} = E(q_{ft}) - f(\tilde{\mathbf{x}}_{ft}; \hat{\boldsymbol{\beta}})$$

$$\hat{\mu}_{ft} = \hat{\theta}_{ft}^{M} \left(\frac{P_{ft}^{M} V_{ft}^{M}}{P_{ft} Q_{ft}}\right)^{-1}$$

$$\widehat{MC}_{ft} = \frac{P_{ft}}{\hat{\mu}_{ft}}$$

- ▶ We solve for the input allocations for MPFs



# Productivity, Markups and Costs

- ullet Estimate translog eta's on SPFs for 14 sectors
- For SPFs, we compute the materials output elasticity:

$$\widehat{\theta}_{\rm ft}^{M} = \widehat{\beta}_{\it m} + 2\widehat{\beta}_{\it mm} m_{\it ft} + \widehat{\beta}_{\it lm} l_{\it ft} + \widehat{\beta}_{\it mk} k_{\it ft} + \widehat{\beta}_{\it lmk} l_{\it ft} k_{\it ft}$$

Compute productivity, markups and marginal costs:

$$\hat{\omega}_{ft} = E(q_{ft}) - f(\tilde{\mathbf{x}}_{ft}; \hat{\boldsymbol{\beta}})$$

$$\hat{\mu}_{ft} = \hat{\theta}_{ft}^{M} \left(\frac{P_{ft}^{M} V_{ft}^{M}}{P_{ft} Q_{ft}}\right)^{-1}$$

$$\widehat{MC}_{ft} = \frac{P_{ft}}{\hat{\mu}_{ft}}$$

- ▶ We solve for the input allocations for MPFs



#### Outline of Talk

- India's Trade Liberalization and Data
- Methodology:
  - Deriving Markups and Costs
  - Identification and Estimation of Production Functions
- Results
  - Markup and Marginal Cost Patterns
  - Impact of Trade Reform
- Conclusion

#### Cross-Sectional Patterns

- More productive firms have higher markups and lower costs
- More productive firms manufacture more products
- Costs fall with output, markups rise with output
- Firms have higher markups and lower costs on core products (consistent with models of MP firms)
- Estimate incomplete pass-through of cost shocks to prices

|                                  | Log Price <sub>fjt</sub> |           |         |
|----------------------------------|--------------------------|-----------|---------|
|                                  | (1)                      | (2)       | (3)     |
| Log Marginal Cost <sub>fjt</sub> | 0.337 ***                | 0.305 *** | 0.406 † |
|                                  | 0.041                    | 0.084     | 0.247   |
| Observations                     | 21,246                   | 16,012    | 12,334  |
| Within R-squared                 | 0.27                     | 0.19      | 0.09    |
| Firm-Product FEs                 | yes                      | yes       | yes     |
| Instruments                      | -                        | yes       | yes     |
| First-Stage F-test               | -                        | 98        | 5       |

#### Outline of Talk

- India's Trade Liberalization and Data
- Methodology:
  - Deriving Markups and Costs
  - Identification and Estimation of Production Functions
- Results
  - Markup and Marginal Cost Patterns
  - ► Impact of Trade Reform
- Conclusion

#### Distribution of Prices



Sample only includes firm-product pairs present in 1989 and 1997. Outliers above and below the 3rd and 97th percentiles are trimmed.

#### **Prices**

$$p_{fjt} = \alpha_{fj} + \alpha_{st} + \beta_1 \tau_{it}^{output} + \beta_2 \tau_{it}^{input} + \eta_{fjt}$$

firm f, product j, year t, 4-digit industry i, 2-digit sector s. Errors clustered at industry level.

#### **Prices**

$$p_{fjt} = \alpha_{fj} + \alpha_{st} + \beta_1 \tau_{it}^{output} + \beta_2 \tau_{it}^{input} + \eta_{fjt}$$

firm f, product j, year t, 4-digit industry i, 2-digit sector s. Errors clustered at industry level. Log Prices<sub>fit</sub>

|                                        | Log Frices <sub>fjt</sub> |
|----------------------------------------|---------------------------|
|                                        | (1)                       |
| Output Tariff <sub>it</sub>            | 0.156 ***                 |
|                                        | 0.059                     |
| Input Tariff <sub>it</sub>             | 0.352                     |
|                                        | 0.302                     |
| Within R-squared                       | 0.02                      |
| Observations                           | 21,246                    |
| Firm-Product FEs                       | yes                       |
| Sector-Year FEs                        | yes                       |
| Overall Impact of Trade Liberalization | -18.1 **                  |
|                                        | 7.4                       |

- Two messages:
  - 10 percentage point decline in tariffs lowers prices by 1.56 percent
  - Input tariff coefficient is very noisy
- On average, output and input tariffs fall 62 and 24 percentage points, so average price falls 18 percent



## Marginal Cost and Markups



Sample only includes firm-product pairs present in 1989 and 1997.
Outliers above and below the 3rd and 97th percentiles are trimmed.



Sample only includes firm-product pairs present in 1989 and 1997.
Outliers above and below the 3rd and 97th percentiles are trimmed.

# Marginal Cost and Markups

|                                        | Log Prices <sub>fjt</sub> | Log Marginal $Cost_{fjt}$ | Log Markup <sub>fjt</sub> |
|----------------------------------------|---------------------------|---------------------------|---------------------------|
|                                        | (1)                       | (2)                       | (3)                       |
| Output Tariff <sub>it</sub>            | 0.156 ***                 | 0.047                     | 0.109                     |
|                                        | 0.059                     | 0.084                     | 0.076                     |
| Input Tariff <sub>it</sub>             | 0.352                     | 1.160 **                  | -0.807 ‡                  |
|                                        | 0.302                     | 0.557                     | 0.510                     |
| Within R-squared                       | 0.02                      | 0.01                      | 0.01                      |
| Observations                           | 21,246                    | 21,246                    | 21,246                    |
| Firm-Product FEs                       | yes                       | yes                       | yes                       |
| Sector-Year FEs                        | yes                       | yes                       | yes                       |
| Overall Impact of Trade Liberalization | -18.1 **                  | -30.7 **                  | 12.6                      |
|                                        | 7.4                       | 13.4                      | 11.9                      |

#### Messages

- No evidence of reduction in X-inefficiencies
- Input tariff declines have big (yet still noisy) impacts on costs, but declines offset by markup increases
- Prices do not fall as much as costs

#### Markup Channel

Flexibly control for marginal costs to isolate pro-competitive effects

|                                                 | Log Markup <sub>fjt</sub> |          |          |          |
|-------------------------------------------------|---------------------------|----------|----------|----------|
|                                                 | (1)                       | (2)      | (3)      | (4)      |
| Output Tariff <sub>it</sub>                     | 0.143 ***                 | 0.150 ** | 0.129 ** | 0.149 ** |
|                                                 | 0.050                     | 0.062    | 0.052    | 0.062    |
| Output Tariff <sub>it</sub> x Top <sub>fp</sub> |                           |          | 0.314 ** | 0.028    |
|                                                 |                           |          | 0.134    | 0.150    |
| Within R-squared                                | 0.59                      | 0.65     | 0.59     | 0.65     |
| Observations                                    | 21,246                    | 16,012   | 21,246   | 16,012   |
| 2nd-Order Marginal Cost Polynomial              | yes                       | yes      | yes      | yes      |
| Firm-Product FEs                                | yes                       | yes      | yes      | yes      |
| Sector-Year FEs                                 | yes                       | yes      | yes      | yes      |
| Instruments                                     | no                        | yes      | no       | yes      |
| First-stage F-test                              | -                         | 8.6      | -        | 8.6      |

- Markups fall more on products in the top decline of the markup distribution
- Controlling for costs, input tariffs have no effect on markups, as expected

#### Conclusion

- Find evidence of substantial variation in markups
- Input tariff liberalization dwarfs effects from output tariffs, results in large declines in marginal costs, but rises in markups
- Methodology may have interesting applications in other contexts (i.e., the misallocation literature)

## **Thanks**

## Identification III: Simultaneity Bias

- Deal with simultaneity bias using the well-known proxy approach developed by Olley & Pakes (1996), Levinsohn & Petrin (2003), Ackerbeg et al. (2006)
- The key departures from Olley & Pakes (1996):
  - Proxy for productivity using materials input demand [Levinsohn & Petrin 2003]
  - Allow input and output tariffs to influence the productivity law of motion [De Loecker 2011]

$$\omega_{ft} = g_{t-1}(\omega_{ft-1}, \tau_{it-b}^{output}, \tau_{it-b}^{input}) + \xi_{ft} \qquad b = \{0, 1\}$$

► Treat labor as a dynamic input, like capital (consistent with Indian labor laws) [Ackerberg et al. 2006]



## Identification III: Simultaneity Bias

- Deal with simultaneity bias using the well-known proxy approach developed by Olley & Pakes (1996), Levinsohn & Petrin (2003), Ackerbeg et al. (2006)
- The key departures from Olley & Pakes (1996):
  - Proxy for productivity using materials input demand [Levinsohn & Petrin 2003]
  - Allow input and output tariffs to influence the productivity law of motion [De Loecker 2011]

$$\omega_{\text{ft}} = g_{t-1}(\omega_{\text{ft}-1}, \tau_{it-b}^{\text{output}}, \tau_{it-b}^{\text{input}}) + \xi_{\text{ft}} \qquad b = \{0, 1\}$$

► Treat labor as a dynamic input, like capital (consistent with Indian labor laws) [Ackerberg et al. 2006]



#### Estimation Strategy

Estimate translog production function, separately by 2-digit sector

$$q_{ft} = f(\mathbf{x}_{ft}; \boldsymbol{\beta}) + \omega_{ft} + \epsilon_{ft}$$

$$= \beta_{I}I_{ft} + \beta_{II}I_{ft}^{2} + \beta_{k}k_{ft} + \beta_{kk}k_{ft}^{2} + \beta_{m}m_{ft} + \beta_{mm}m_{ft}^{2} + \beta_{Ik}I_{ft}k_{ft}$$

$$+ \beta_{Im}I_{ft}m_{ft} + \beta_{mk}m_{ft}k_{ft} + \beta_{Imk}I_{ft}m_{ft}k_{ft} + \omega_{ft} + \epsilon_{ft}$$

- Use static material demand to proxy for unobserved productivity,  $\omega_{ft} = h_t(m_{ft}, \mathbf{k}_{ft}, \mathbf{z}_{ft})$
- Vector  $\mathbf{z}_{\mathit{ft}}$  includes all variables that affect material demand,  $\mathbf{z}_{\mathit{ft}} = \{p_{\mathit{ft}}, \tau_{\mathit{it}}^{\mathit{output}}, \tau_{\mathit{it}}^{\mathit{input}}, \mathbf{D}_{\mathit{j}}\}$

# **Estimation Strategy**

Stage 1: Regress

$$q_{ft} = \phi_t(I_{ft}, k_{ft}, m_{ft}, \mathbf{z}_{ft}) + \epsilon_{ft}$$

and recover  $\hat{\phi}$ .

- Stage 2: Construct Moments
- ullet Choose a candidate eta
  - Construct  $\hat{\omega}_{ft} = \hat{\phi}_{ft} f(\mathbf{x}_{ft}; \boldsymbol{\beta})$
  - Non-parametrically regress  $\hat{\omega}_{ft}$  on  $\hat{\omega}_{ft-1}$  (and tariffs) to recover  $\xi_{ft}(\beta)$
  - Minimize  $E(\boldsymbol{\xi}_{ft}(\boldsymbol{\beta})\mathbf{Y}_{ft})=0$

$$\mathbf{Y}_{ft} = \{l_{ft-b}, l_{ft-b}^2, m_{ft-1}, m_{ft-1}^2, k_{ft-b}, k_{ft-b}^2, l_{ft-b}m_{ft-1}, l_{ft-b}k_{ft-b}, m_{ft-1}k_{ft-b}, l_{ft-b}m_{ft-1}k_{ft-b}\}$$

Note that  $m_{ft}$  is excluded here since it responds perfectly to  $\xi_{ft}$  shocks.



- Estimating physical production function introduces an additional bias from observing input expenditures
- We only observe deflated input expenditures  $(\tilde{\mathbf{x}}_{ft})$  by sector
  - ▶ To understand the bias, consider one-factor case where we observe sector-deflated  $\tilde{l}_{ft} = l_{ft} + w_{ft}^L$

$$q_{\mathrm{ft}} = \beta_{\mathrm{I}}\tilde{\mathit{I}}_{\mathrm{ft}} + \beta_{\mathrm{II}}\tilde{\mathit{I}}_{\mathrm{ft}}^{2} + \underbrace{\beta_{\mathrm{I}}w_{\mathrm{ft}}^{\mathrm{L}} + \beta_{\mathrm{II}}\left(w_{\mathrm{ft}}^{\mathrm{L}}\right)^{2} + 2\beta_{\mathrm{II}}(w_{\mathrm{ft}}^{\mathrm{L}}\tilde{\mathit{I}}_{\mathrm{ft}})}_{\text{unobserved}} + \omega_{\mathrm{ft}}$$

- Intuitively, we would be regressing quantities on rupees
- Take two t-shirt firms with identical productivity and output
  - ▶ One firm uses expensive silk, the other uses inexpensive cotton
- We would find the silk firm to be less productive (same output quantity despite more rupees spent)



- Estimating physical production function introduces an additional bias from observing input expenditures
- We only observe deflated input expenditures  $(\tilde{\mathbf{x}}_{ft})$  by sector
  - ▶ To understand the bias, consider one-factor case where we observe sector-deflated  $\tilde{l}_{ft} = l_{ft} + w_{ft}^L$

$$q_{\mathrm{ft}} = \beta_{\mathrm{I}}\tilde{\mathrm{I}}_{\mathrm{ft}} + \beta_{\mathrm{II}}\tilde{\mathrm{I}}_{\mathrm{ft}}^{2} + \underbrace{\beta_{\mathrm{I}}w_{\mathrm{ft}}^{\mathrm{L}} + \beta_{\mathrm{II}}\left(w_{\mathrm{ft}}^{\mathrm{L}}\right)^{2} + 2\beta_{\mathrm{II}}(w_{\mathrm{ft}}^{\mathrm{L}}\tilde{\mathrm{I}}_{\mathrm{ft}})}_{\text{unobserved}} + \omega_{\mathrm{ft}}$$

- Intuitively, we would be regressing quantities on rupees
- Take two t-shirt firms with identical productivity and output
  - ▶ One firm uses expensive silk, the other uses inexpensive cotton
- We would find the silk firm to be less productive (same output quantity despite more rupees spent)



• More generally (i.e., many inputs), we will have

$$q_{\mathrm{ft}} = \mathit{f}(\tilde{\mathbf{x}}_{\mathrm{ft}};\boldsymbol{\beta}) + \omega_{\mathrm{ft}} + \mathit{B}_{\mathrm{ft}}(\tilde{\mathbf{x}}_{\mathrm{ft}},\mathbf{W}_{\mathrm{ft}};\boldsymbol{\beta}) + \epsilon_{\mathrm{ft}}$$

• Let  $\tilde{\omega}_{ft} = \omega_{ft} + B_{ft}$  and measured innovation to productivity

$$\widetilde{\xi}_{ft} = \widetilde{\omega}_{ft} - g_{t-1}(\widetilde{\omega}_{ft-1}, au_{it-b}^{output}, au_{it-b}^{input})$$

Re-express as

$$\tilde{\xi}_{\mathit{ft}} = \xi_{\mathit{ft}} + B_{\mathit{ft}} - g_{t-1}(\tilde{\omega}_{\mathit{ft}-1}, \tau_{\mathit{it}-b}^{\mathit{output}}, \tau_{\mathit{it}-b}^{\mathit{input}}) + g_{t-1}(\omega_{\mathit{ft}-1}, \tau_{\mathit{it}-b}^{\mathit{output}}, \tau_{\mathit{it}-b}^{\mathit{input}})$$

• Problem! Since  $\tilde{\xi}_{ft}$  is a function of lag input prices, our materials moment conditions are violated!



More generally (i.e., many inputs), we will have

$$q_{\mathrm{ft}} = f(\tilde{\mathbf{x}}_{\mathrm{ft}}; \boldsymbol{\beta}) + \omega_{\mathrm{ft}} + B_{\mathrm{ft}}(\tilde{\mathbf{x}}_{\mathrm{ft}}, \mathbf{W}_{\mathrm{ft}}; \boldsymbol{\beta}) + \epsilon_{\mathrm{ft}}$$

• Let  $\tilde{\omega}_{ft} = \omega_{ft} + B_{ft}$  and measured innovation to productivity

$$\tilde{\xi}_{\mathit{ft}} = \tilde{\omega}_{\mathit{ft}} - g_{t-1}(\tilde{\omega}_{\mathit{ft}-1}, \tau_{\mathit{it}-b}^{\mathit{output}}, \tau_{\mathit{it}-b}^{\mathit{input}})$$

Re-express as

$$\tilde{\xi}_{\mathit{ft}} = \xi_{\mathit{ft}} + B_{\mathit{ft}} - g_{\mathit{t}-1}(\tilde{\omega}_{\mathit{ft}-1}, \tau_{\mathit{it}-b}^{\mathit{output}}, \tau_{\mathit{it}-b}^{\mathit{input}}) + g_{\mathit{t}-1}(\omega_{\mathit{ft}-1}, \tau_{\mathit{it}-b}^{\mathit{output}}, \tau_{\mathit{it}-b}^{\mathit{input}})$$

• Problem! Since  $\tilde{\xi}_{ft}$  is a function of lag input prices, our materials moment conditions are violated!



#### Identification Strategy IV: Input Price Bias Solution

- Address this issue by modifying the GMM moments by flexibly controlling for output prices and input tariffs in the second stage
- Intuition is that output price variation reflects input price variation [Kugler and Verhoogen 2011]
- Modify the second stage

$$\omega_{ft}(\beta, \delta) = \phi_{ft} - f(\tilde{\mathbf{x}}_{ft}; \beta) - d_t(p_{ft}, \tau_{it}^{input}, \tilde{\mathbf{x}}_{ft}; \delta)$$

• New moment conditions become:

$$E\left(\tilde{\pmb{\xi}}_{\mathit{ft}}(\pmb{\beta}) \pmb{\mathsf{Y}}_{\mathit{ft}} | \textit{d}(.)\right) = 0$$



#### Selection Correction Details

- We improve on the selection problem created by using SPFs by using an unbalanced panel of SPFs (ie, SPFs that may become MPFs)
- Olley & Pakes (1996) are worried about left-tail truncation. Here, we are worried about right-tail truncation.
  - ▶ Bias arises if decision to introduce a new product is correlated with inputs
  - ▶ i.e., Capital-intensive firms, *ceteris paribus*, can more easily finance new product development
- Follow OP strategy by modifying the law of motion to include a propensity score of remaining an SPF,  $g_{t-1}(\omega_{\mathit{ft}-1}, \tau_{\mathit{it}}^{\mathit{input}}, \tau_{\mathit{it}}^{\mathit{output}}, \hat{S}_{\mathit{ft}-1})$

#### Selection Correction Details

- Assume new product introduction decision made in t-1
- ullet Firms are single-product if productivity below a cutoff  $ar{\omega}_{ft}$ 
  - ▶ The cutoff is a function of state variables (inputs,  ${\bf z}$  vector) and firm's information set at t-1
  - Let  $\chi_{ft} = 1$  if firm remains a SPF

$$\begin{array}{lll} \Pr(\chi_{ft}=1) & = & \Pr\left[\omega_{ft} \leq \bar{\omega}_{ft}(I_{ft}, k_{ft}, \mathbf{z}_{ft}) | \bar{\omega}_{ft}(I_{ft}, k_{ft}, \mathbf{z}_{ft}), \omega_{ft-1} \right] & (1) \\ & = & \kappa_{t-1}(\bar{\omega}_{ft}(I_{ft}, k_{ft}, \mathbf{z}_{ft}), \omega_{ft-1}) \\ & = & \kappa_{t-1}(I_{ft-1}, k_{ft-1}, i_{ft-1}, \mathbf{z}_{ft-1}, \omega_{ft-1}) \\ & = & \kappa_{t-1}(I_{ft-1}, k_{ft-1}, i_{ft-1}, \mathbf{z}_{ft-1}, m_{ft-1}) \equiv S_{ft-1} \end{array}$$

• Since  $S_{\mathit{ft}-1} = \kappa_{\mathit{t}-1}(\omega_{\mathit{ft}-1}, \bar{\omega}_{\mathit{ft}})$ , we can express the cutoff as a function of the propensity score  $\bar{\omega}_{\mathit{ft}} = \kappa_{\mathit{ft}}^{-1}(\omega_{\mathit{ft}-1}, S_{\mathit{ft}-1})$  and re-write law of motion as

$$\omega_{\mathit{ft}} = \mathsf{g}'_{\mathit{t}-1}(\omega_{\mathit{ft}-1}, \tau_{\mathit{it}-b}^{\mathit{input}}, \tau_{\mathit{it}-b}^{\mathit{output}}, S_{\mathit{ft}-1}) + \xi_{\mathit{ft}}$$

• Operationally, run a probit that firm remains SPFs on inputs and  $\mathbf{z}$  vector, get the predicted score  $\hat{S}_{ft-1}$  and insert into law of motion

## One-Factor Translog Example

Consider the one-factor translog example

$$q_{fjt} = \beta_I I_{ft} + \beta_{II} I_{ft}^2 + \beta_I \rho_{fjt} + \beta_{II} (\rho_{fjt})^2 + 2\beta_{II} (\rho_{fjt} I_{ft}) + \omega_{ft} + \epsilon_{fjt}$$

• Construct  $\hat{\omega}_{\mathit{fjt}} = \mathit{E}(q_{\mathit{fjt}}) - \hat{\beta}_{\mathit{I}}\mathit{I}_{\mathit{ft}} - \hat{\beta}_{\mathit{II}}\mathit{I}_{\mathit{ft}}^{2}$ :

$$\hat{\omega}_{fjt} = \omega_{ft} + \hat{\beta}_{I}\rho_{fjt} + \hat{\beta}_{II} (\rho_{fjt})^2 + 2\hat{\beta}_{II}(\rho_{fjt}I_{ft})$$
$$= \omega_{ft} + \hat{a}_{ft}\rho_{fjt} + \hat{b}_{ft}\rho_{fjt}^2$$

where  $\hat{a}_{\it ft}=eta_{\it I}+2\hat{eta}_{\it II}I_{\it ft}$  and  $\hat{b}_{\it ft}=\hat{eta}_{\it II}$ .

We solve for the ho's and  $\omega$  for each firm-year pair by solving:

$$\begin{array}{rcl} \hat{\omega}_{f1t} & = & \omega_{ft} + \hat{a}_{ft}\rho_{f1t} + \hat{b}_{ft}\rho_{f1t}^2 \\ & \dots & = & \dots \\ & \hat{\omega}_{fJt} & \omega_{ft} + \hat{a}_{ft}\rho_{fJt} + \hat{b}_{ft}\rho_{fJt}^2 \\ & & \\ \sum_{j=1}^J \exp\left(\rho_{fjt}\right) & = & 1, \qquad \exp(\rho_{fjt}) < 1 \qquad \forall j \end{array}$$

## One-Factor Translog Example

• Consider the one-factor translog example

$$q_{fjt} = \beta_I I_{ft} + \beta_{II} I_{ft}^2 + \beta_I \rho_{fjt} + \beta_{II} (\rho_{fjt})^2 + 2\beta_{II} (\rho_{fjt} I_{ft}) + \omega_{ft} + \epsilon_{fjt}$$

• Construct  $\hat{\omega}_{fjt} = E(q_{fjt}) - \hat{\beta}_I I_{ft} - \hat{\beta}_{II} I_{ft}^2$ :

$$\hat{\omega}_{fjt} = \omega_{ft} + \hat{\beta}_{I}\rho_{fjt} + \hat{\beta}_{II} (\rho_{fjt})^{2} + 2\hat{\beta}_{II}(\rho_{fjt}I_{ft}) 
= \omega_{ft} + \hat{a}_{ft}\rho_{fjt} + \hat{b}_{ft}\rho_{fjt}^{2}$$

where  $\hat{a}_{\it ft}=eta_{\it I}+2\hat{eta}_{\it II}I_{\it ft}$  and  $\hat{b}_{\it ft}=\hat{eta}_{\it II}$ .

We solve for the  $\rho$ 's and  $\omega$  for each firm-year pair by solving:

$$\begin{array}{rcl} \hat{\omega}_{f1t} & = & \omega_{ft} + \hat{a}_{ft}\rho_{f1t} + \hat{b}_{ft}\rho_{f1t}^2 \\ & \dots & = & \dots \\ & \hat{\omega}_{fJt} & \omega_{ft} + \hat{a}_{ft}\rho_{fJt} + \hat{b}_{ft}\rho_{fJt}^2 \\ & & \\ \sum_{j=1}^J \exp\left(\rho_{fjt}\right) & = & 1, \qquad \exp(\rho_{fjt}) < 1 \qquad \forall j \end{array}$$

## Productivity, Markups and Costs for MPFs

 We now obtain markups and marginal costs for the MPFs for each firm-product-year triplet

$$\hat{\mu}_{fjt} = \hat{\theta}_{fjt}^{M} \left( \frac{\exp\left(\hat{\rho}_{fjt}\right) P_{ft}^{M} V_{ft}^{M}}{P_{fjt} Q_{fjt}} \right)^{-1}$$

where

$$\begin{split} \widehat{\theta}_{\mathit{fjt}}^{M} &= \hat{\beta}_{\mathit{m}} + 2 \hat{\beta}_{\mathit{mm}} \left[ \hat{\rho}_{\mathit{fjt}} + \mathit{m}_{\mathit{ft}} \right] + \hat{\beta}_{\mathit{lm}} \left[ \hat{\rho}_{\mathit{fjt}} + \mathit{l}_{\mathit{ft}} \right] \\ &+ \hat{\beta}_{\mathit{mk}} \left[ \hat{\rho}_{\mathit{fjt}} + \mathit{k}_{\mathit{ft}} \right] + \hat{\beta}_{\mathit{lmk}} \left[ \hat{\rho}_{\mathit{fjt}} + \mathit{l}_{\mathit{ft}} \right] \left[ \hat{\rho}_{\mathit{fjt}} + \mathit{k}_{\mathit{ft}} \right] \end{aligned}$$

• Divide price  $P_{fit}$  by markup to get marginal cost • Back! • general case

## Productivity, Markups and Costs for MPFs

- Although input allocation for MPFs is not observed, we can solve for it
- ullet Recall that since we do not observe ho's, the MP production function is

$$q_{fjt} = \tilde{\mathbf{x}}_{ft}\boldsymbol{\beta} + \omega_{ft} + A(\rho_{fjt}, \tilde{\mathbf{x}}_{ft}; \boldsymbol{\beta}) + \epsilon_{fjt}$$

- Use  $\hat{\boldsymbol{\beta}}$  to compute  $\widehat{\omega}_{\mathit{fjt}} = \mathit{E}(q_{\mathit{fjt}}) \mathit{f}(\tilde{\mathbf{x}}_{\mathit{ft}}; \hat{\boldsymbol{\beta}}) = \omega_{\mathit{ft}} + \mathit{A}(\rho_{\mathit{fjt}}, \tilde{\mathbf{x}}_{\mathit{ft}}; \boldsymbol{\beta})$
- For a 3-factor translog, we can re-express as

$$\widehat{\omega}_{fjt} = \omega_{ft} + \hat{a}_{ft}\rho_{fjt} + \hat{b}_{ft}\rho_{fjt}^2 + \hat{c}_{ft}\rho_{fjt}^3$$

where  $\hat{a},\hat{b},\hat{c}$  are functions of the translog parameters

- ullet For a firm with J products, we have J+1 unknowns  $(\omega_{\mathit{ft}}, \rho_{\mathit{flt}}, \dots, \rho_{\mathit{fJt}})$
- Add one more constraint:

$$\sum_{j=1}^{J} \exp(\rho_{fjt}) = 1, \qquad \exp(\rho_{fjt}) \le 1 \quad \forall j$$

• We numerically solve the system of J+1 equations and J+1 unknowns



#### Translog Parameter Expressions

• For the 3-factor translog production function that we use:

$$\hat{a}_{ft} = \hat{\beta}_{I} + \hat{\beta}_{m} + \hat{\beta}_{k} + 2 \left( \hat{\beta}_{II} I_{ft} + \hat{\beta}_{mm} m_{ft} + \hat{\beta}_{kk} k_{ft} \right) + \hat{\beta}_{Im} \left( I_{ft} + m_{ft} \right)$$

$$+ \hat{\beta}_{Ik} \left( I_{ft} + k_{ft} \right) + \hat{\beta}_{mk} \left( m_{ft} + k_{ft} \right) + \hat{\beta}_{Imk} \left( I_{ft} m_{ft} + I_{ft} k_{ft} + m_{ft} k_{ft} \right)$$

$$\hat{b}_{ft} = \hat{\beta}_{II} + \hat{\beta}_{mm} + \hat{\beta}_{kk} + \hat{\beta}_{Im} + \hat{\beta}_{Ik} + \hat{\beta}_{mk} + \hat{\beta}_{Imk} \left( I_{ft} + m_{ft} + k_{ft} \right)$$

$$\hat{c}_{ft} = \hat{\beta}_{Imk}$$

▶ Back!

#### **Production Coefficients**

|                                          | Observations in<br>Production Function<br>Estimation | Labor          | Materials      | Capital         | Returns to<br>Scale |
|------------------------------------------|------------------------------------------------------|----------------|----------------|-----------------|---------------------|
| Sector                                   | (1)                                                  | (2)            | (3)            | (4)             | (5)                 |
| 15 Food products and beverages           | 795                                                  | 0.13<br>[0.17] | 0.71<br>[0.22] | 0.15<br>[0.14]  | 0.99<br>[0.28]      |
| 17 Textiles, Apparel                     | 1,581                                                | 0.11<br>[0.02] | 0.82<br>[0.04] | 0.08<br>[0.08]  | 1.01<br>[0.06]      |
| 21 Paper and paper products              | 470                                                  | 0.19<br>[0.12] | 0.78<br>[0.10] | 0.03<br>[0.05]  | 1.00<br>[0.06]      |
| 24 Chemicals                             | 1,554                                                | 0.17<br>[0.08] | 0.79<br>[0.07] | 0.08            | 1.03<br>[0.08]      |
| 25 Rubber and Plastic                    | 705                                                  | 0.15<br>[0.39] | 0.69<br>[0.29] | -0.02<br>[0.35] | 0.82<br>[0.89]      |
| 26 Non-metallic mineral products         | 633                                                  | 0.16           | 0.67<br>[0.12] | -0.04<br>[0.40] | 0.79<br>[0.36]      |
| 27 Basic metals                          | 949                                                  | 0.14<br>[0.09] | 0.77<br>[0.11] | 0.01<br>[0.06]  | 0.91<br>[0.18]      |
| 28 Fabricated metal products             | 393                                                  | 0.18<br>[0.04] | 0.75<br>[0.08] | 0.03<br>[0.17]  | 0.96<br>[0.17]      |
| 29 Machinery and equipment               | 702                                                  | 0.20           | 0.76           | 0.18            | 1.13<br>[0.14]      |
| 31 Electrical machinery & communications | 761                                                  | 0.09           | 0.78           | -0.06<br>[0.22] | 0.81                |
| 34 Motor vehicles, trailers              | 386                                                  | 0.25           | 0.63           | 0.11            | 1.00                |

- Evidence of returns to scale
- Production technology varies across firms



#### Markups Across Sectors

|                                         | Markups |        |  |
|-----------------------------------------|---------|--------|--|
| Sector                                  | Mean    | Median |  |
| 15 Food products and beverages          | 1.78    | 1.15   |  |
| 17 Textiles, Apparel                    | 1.57    | 1.33   |  |
| 21 Paper and paper products             | 1.22    | 1.21   |  |
| 24 Chemicals                            | 2.25    | 1.36   |  |
| 25 Rubber and Plastic                   | 4.52    | 1.37   |  |
| 26 Non-metallic mineral products        | 4.57    | 2.27   |  |
| 27 Basic metals                         | 2.54    | 1.20   |  |
| 28 Fabricated metal products            | 3.70    | 1.36   |  |
| 29 Machinery and equipment              | 2.48    | 1.34   |  |
| 31 Electrical machinery, communications | 5.66    | 1.43   |  |
| 34 Motor vehicles, trailers             | 4.64    | 1.39   |  |
| Average                                 | 2.70    | 1.34   |  |

## Increasing Returns to Scale





#### Markups, Marginal Costs and Product Sales Shares



