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We propose a methodology for defining urban markets based on builtup landcover classified from daytime satellite 

imagery. Compared to markets defined using minimum thresholds for nighttime light intensity, daytime imagery 

identify an order of magnitude more markets, capture more of India’s urban population, are more realistically 

jagged in shape, and reveal more variation in the spatial distribution of economic activity. We conclude that 

daytime satellite data are a promising source for the study of urban forms. 
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. Introduction 

Core to the study of economic geography is explaining why cities ex-

st and how their dimensions are determined. It is standard to attribute

he existence of cities to the benefits of agglomeration —be they con-

entional agglomeration economies (e.g., Henderson, 1974, Duranton

nd Puga, 2001 ), or home-market effects derived in new-economic-

eography models (e.g., Fujita et al., 2001 ). Where cities locate, in

urn, is influenced by the availability of key resources, access to trans-

ortation routes, and historical accident (e.g., Bleakley and Lin, 2012,

enderson et al., 2018 ). Within cities, the clustering of activity creates

radients in land prices and presents workers with a tradeoff between

ousing costs and commute times ( Duranton and Puga, 2015 ). A rich

nd vibrant literature studies how the concentrating forces of agglom-

ration and the dispersing forces of congestion combine to create urban

ystems (e.g., Duranton and Puga, 2004, Desmet and Henderson, 2015 ).

Empirical work on economic geography requires measuring the

ocation and scale of urban activity. A common approach to measure-

ent is to use officially designated administrative units. These may be
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s large as a metropolitan area (e.g., Duranton and Turner, 2012 ), as

mall as a town or village (e.g., Eeckhout, 2004 ), or an intermediately

ized unit such as a county or a district (e.g., Hanson, 2005, Ghani

t al., 2014, Donaldson and Hornbeck, 2016 ). Because administrative

oundaries are defined according to pre-existing legal jurisdictions,

hey may be noisy indicators of how cities are actually organized. In

nfluential work, Rozenfeld et al. (2011) construct cities by clustering

fficially designated towns and villages into larger units based on

eographic proximity. This approach only works, however, if official

ources measure activity for fine administrative units on a frequent

asis. In many countries, such data are available only decadally, if at all.

In this paper, we use remotely sensed data to detect urban markets

n India for 2013. A market is a set of contiguous, or near contiguous,

ixels that contain economic activity according to daytime or nighttime

atellite imagery. Our practical approach approximates the conceptual

efinition of a market in economic geography models: a set of locations

hat are highly integrated relative to outside locations because of low

nternal trade costs (e.g., Redding, 2016 ) and (or) low commuting costs

e.g., Duranton, 2015 ). We categorize a pixel as having economic activ-
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1 Using the nightlight-GDP elasticity of 0.3 from Henderson et al. (2012) im- 

plies that the larger area would have a 56.8% higher GDP. 
2 Alqurashi and Kumar (2013) discuss earlier work in remote sensing to detect 

land use. Recent papers that detect urban land for individual countries include 

Pandey et al. (2013) on India; Bagan and Yamagata (2015) on Japan; and Zhou 

et al. (2014) , Huang et al. (2015) , and Fu et al. (2017) on China. For literature 

that detects urban land using daytime satellite imagery, see Trianni et al. (2015) , 
ty if its nighttime light intensity exceeds a given threshold or its spectral

roperties indicate builtup landcover. Our maintained assumption is

hat clusters of proximate pixels are integrated through internal trade

nd commuting links, which we attempt to validate in external data. 

Our first source of imagery is nighttime lights from the Defense

eteorological Satellite Program Operational Linescan System, which

ndicates the presence of economically active agents ( Henderson et al.,

012 ). Following Rozenfeld et al. (2011) , we explore buffers that

ombine contiguous sets of pixels if they lie within a radius of 1 km,

 km, 4 km or 8 km. Defining urban land using nightlights requires

hoosing a minimum threshold of light intensity for contiguous pixels.

arari (2017) , for instance, in her analysis of urban sprawl in large

ndian cities chooses a digital number (DN) of 35 (on a scale of 0 to 63)

o designate urban areas. Our analysis reveals a tradeoff in choosing

he minimum light threshold for a market: while a strict threshold

nly captures major urban agglomerations, lowering the threshold to

nclude smaller cities explodes the size of larger cities with proximate

atellites. This tradeoff is a consequence of the blooming effect of light,

hich produces cities whose boundaries are too expansive and too

mooth relative to actual cities. 

We contrast the spatial extent of nightlight-based markets with those

ormed from high-resolution daytime satellite imagery. These data are

vailable at finer resolutions than nighttime lights data but require

urther image classification to detect urban land. We explore data on

uiltup landcover from the MODIS layer constructed by Channan et al.

2014) . We also examine two additional daytime imagery layers: the

lobal Human Settlements Layer ( Pesaresi et al., 2015 ) and a recent

ayer produced by Goldblatt et al. (2018) . We define landcover-based

arkets using an analogous algorithm that clusters contiguous or near

ontiguous pixels of builtup landcover. 

Our approach has three advantages over conventional methods to

easure urban areas using administrative data. First, it is scalable. Be-

ause our method is algorithmic and uses publicly available imagery, it

cales to detect markets globally and, in principle, over time. It also cir-

umvents the need to reconcile differences across countries and time in

ow administrative units are defined. Second, and relatedly, our data do

ot stop at national borders. Markets that straddle national boundaries

long transportation routes can be tracked. Third, the spatial resolution

s adjustable. By altering the buffer used to aggregate proximate pixels,

e can narrow the focus to the rough equivalent of a town center or

iden the focus to a metropolitan area. This versatility is helpful for

etecting within-metro area heterogeneity, a feature we explore. 

To preview our results, the patterns of landcover-based markets

re starkly different from those of nightlight-based markets. Using the

efinition of a market that buffers clusters of contiguous pixels at 1 km,

e detect 1669 and 469 markets using a nightlight threshold of DN33

nd DN60, respectively. The DN60 markets accurately capture India’s

argest 470 cities according to official Census data, which suggests

hat nightlight-based markets are reliable for tracking activity across

ndia’s major urban areas. In contrast, we detect an order of magnitude

ore markets using MODIS data: 12,953 in total. These markets are

maller, less compact, more closely fit a power law in area size, and

apture activity ranging from distinct areas within large metropolises

o small towns that are distant from India’s major cities. For example,

ithin Delhi’s official administrative boundary, we detect 579 distinct

 km MODIS markets. More remote, landcover-based markets have an

verage DN nightlight intensity of just 5, suggesting that we are able to

apture many parts of India that lack reliable access to electricity. While

e could detect these markets with nightlight data by lowering the

ight-intensity threshold, this would come at the cost of vastly increas-

ng the area of above-threshold contiguous pixels around India’s large

ities, which is evident from visual inspection and from statistics on the

aximum size of markets at different thresholds. Our results suggest

hat landcover-based markets are able to capture small cities and towns

n India while preserving the spatial distribution of activity of the largest

ities. 
G
We perform several validation checks to demonstrate that our

arkets capture real economic activity. Using shape files for the 2011

ndia Census, we allocate population across our market boundaries.

ollectively, the DN33 and DN60 1 km markets contain 23.4% and

4.8% of India’s total population and 75.3% and 47.6% of India’s urban

opulation, respectively. The MODIS 1 km markets capture 29.0% and

3.2% of India’s total and urban populations, respectively. Market size

orrelates strongly with population, and the variance in population

or smaller sized landcover markets reflects the fact that these markets

nclude both dense areas within major metro areas and less populated

eripheral towns. We detect strong correlations between market size

nd proximity to public infrastructure, such as roads, railway stations

nd mobile phone towers. Additionally, we find that larger landcover-

ased markets have higher nighttime light intensity. These correlations

re important for addressing a limitation of daytime satellite data.

hile these data are suitable for measuring the spatial extent of mar-

ets, they may not reveal the intensity of economic activity. However,

he positive correlations reveal that the extensive margin —which is

easured accurately through daytime imagery —correlates well with

roxies for the intensive margin. For example, a MODIS market at

he 10th percentile of the land-area distribution has a nightlight DN

f 9.4 compared to 27.2 for a market at the 90th percentile of land

rea. 1 Combining daytime imagery to measure the boundary of markets

ith nighttime data to measure the intensity of activity is a promising

pproach to leverage two remotely sensed datasets that are publicly

vailable, have a long time span, and have global coverage. 

Finally, we consider the potential to use landcover-based markets

o study polycentric cities ( Duranton and Puga, 2015 ). The literature

as long recognized that cities do not expand smoothly along their

argins but through the construction of outlying communities in the

orm of suburbs, edge cities, or commercial hubs (e.g., Henderson and

itra, 1996, Anas et al., 1998 ). For example, the Hyderabad metro

rea, which spans 650 km 

2 and contains 6.8 million people, contains

yderabad and Secunderabad as major poles and substantial satellites

n Ghatkesar and Kukatpally. As one zooms in further, many more

atellites appear and Hyderabad’s full polycentricity is revealed. We

xamine polycentricity using the larger buffered markets, which we

erm “super-markets ”. The average MODIS 8 km market spans an area

f 63.4 km 

2 , but physical structures cover only 23% of this area. On

verage, these super-markets contain 4.2 distinct 1 km markets; the

lasticity of the number of 1 km buffered markets with respect to super-

arket area size is 0.36. This within-market variation may be sufficient

o study, for instance, how transportation investments, such as ring

oads or metro rail, impact the distribution of economic activity within

arge cities. To demonstrate this possibility, we construct measures of

arket access based on Donaldson and Hornbeck (2016) and find that a

on-trivial portion of a market’s access is determined by other close-by

arkets that are within the same larger buffered super-market. 

The availability of satellite imagery and machine-learning tech-

iques for image classification have led to rapid advances in detecting

and use in the remote sensing literature. In efforts to construct urban

ayers for the world as a whole, Pesaresi et al. (2015) use Landsat im-

gery to detect urban land for grid cells at a 38 m resolution, Channan

t al. (2014) use MODIS imagery to detect multiple types of land use for

rid cells at a 500 m resolution, and Zhou et al. (2015) use nightlight

ntensity to detect urban land at a 1 km resolution. 2 This work typically

lassifies land use at the pixel level, where the dimensions of the pixels
oldblatt et al. (2016) , and Goldblatt et al. (2018) . 
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3 Blooming and saturation are less pronounced in data from recently launched 

satellites. The Visible Infrared Imaging Radiometer Suite (VIIRS), imagery from 

which is only available since 2012, detects electric light at a higher spatial res- 

olution and at lower distortion than DMSP-OLS. See Elvidge et al. (2017) for 

a discussion of VIIRS imagery and Shi et al. (2014) for an application of these 

data to detecting urban areas in China. Henderson et al. (2018) use a radiance- 

calibrated version of the nightlight data that alleviates the saturation effect 

( Elvidge et al., 1999 ) but these data are also available only for a subset of re- 

cent years. We use DMSP-OLS imagery in order to create methods for measuring 

markets that can be extended backward in time. 
4 The threshold pixel choice of 1 may appear to low. As a point of reference, 

Rozenfeld et al. (2011) use grid cells with 200 m resolution for Great Britain 

and FIPS units for the U.S., which range from 100 m grid cells in Manhattan to 

100 km grid cells in Wyoming. In recent work, de Bellefon et al. (2019) provide 

a statistical approach to choose thresholds to define urban areas using detailed 

geocoded data on the location of buildings in France, and detect distinct urban 

areas as small as 0.04 km 

2 . 
5 The bunching at 0 and 5 is an artifact of the stable light band of satellite F14, 

which removes noise and unstable light removal. Cauwels et al. (2014) note 

that the number of pixels with DN greater than 0 and less than 5 is extremely 
ary according to the source of the satellite imagery. Pixel-level clas-

ifications, while important building blocks in urban analysis, are not

n and of themselves informative for the study of economic geography.

ithout aggregating pixels to form larger markets, one cannot test the-

ries of the size distribution of cities, evaluate the impacts of expanding

ational transportation grids, or identify the consequences of severe

eather events, plant closures, or other localized economic shocks. 

Our results contribute most directly to the efforts to delineate

rban areas that do not rely on administrative boundaries. In addition

o Rozenfeld et al. (2011) , our paper has antecedents in Eeckhout

2004) , who uses U.S. Census Designated Places instead of (much

arger) Metropolitan Statistical Areas to re-examine Zipf’s law and

ibrat’s law; Burchfield et al. (2006) , who use contiguous pixels to

easure sprawl in the U.S. based on Landsat satellite imagery from

976 to 1992; and Harari (2017) , who uses nightlights to track urban

prawl in large Indian metropolitan areas. Davis et al. (2019) also use

lusters of pixels above nightlight thresholds to construct metro areas

n Brazil, China, and India. Recent work by Duranton (2015) proposes

n alternative algorithm to construct markets based on commuting

atterns for Colombia. de Bellefon et al. (2019) develop a statistical

pproach to detect urban areas using precise locational data covering

4 million buildings in France. Our contribution to this literature is to

evelop and compare methods to detect markets solely from remotely

ensed data, and in particular daytime imagery. 

More broadly, our paper builds on the increasing use of remotely

ensed data for economic analysis. Economists have used satellite

ata on the intensity of light emitted at night to study national and

egional economic growth ( Henderson et al., 2012, Gennaioli et al.,

013, Pinkovskiy and Sala-i Martin, 2016 ), the political economy

f regional development ( Gennaioli et al., 2013, Michalopoulos and

apaioannou, 2013a, Michalopoulos and Papaioannou, 2013b ), spatial

inkages between cities ( Storeygard, 2016 ), and the global distribution

f economic activity ( Henderson et al., 2018 ), among a rapidly growing

et of topics. Daytime satellite imagery, whose use in economics was

ioneered by Burchfield et al. (2006) , is available at even higher spatial

esolutions, down to 30 m for data going back to the late 1990s and

own to less than 1 m for imagery from recently launched proprietary

atellites. Michaels et al. (2018) use an ensemble of remotely sensed

magery to measure urbanization in Tanzania. For a comprehensive

urvey of recent work, see Donaldson and Storeygard (2016) . 

Section 2 presents the method to detect markets from satellite

magery. Section 3 compares nightlight-based markets and landcover-

ased markets and provides validation checks. Section 4 uses landcover-

ased markets to evaluate market access. Section 5 concludes. 

. Algorithmic approach to detect markets 

We define markets using two sources of remotely sensed data: (1)

he intensity of light as captured by nighttime lights data; and (2)

lassifications for builtup landcover based on daytime satellite imagery.

n this section, we describe the data sources and algorithms used to

etect the spatial extent of a market for each data source. 

.1. Detecting markets from nightlight imagery 

The US Air Force Defense Meteorological Satellite Program (DMSP)

perates satellites that carry light sensors known as the Operational

inescan System (OLS). Originally used to detect the global distribution

f clouds and cloud-top temperatures, OLS sensors also detect visible

nd near-infrared emissions at night from different sources on Earth,

uch as city lights, auroras, gas flares, and fires. Pixels have a resolution

f 30 arc seconds, or approximately 1 km ×1 km. For each pixel, the

igital number of calibrated light intensity ranges from 0 to 63, which

e refer to as the nightlight value or intensity. Because persistent light

mitted at night is often associated with man-made structures, we

ssume that if the intensity of a pixel exceeds a given threshold, this
ixel represents a populated location. Processed DMSP-OLS imagery is

ublicly available from 1992 to 2014, and can be analyzed on Google

arth Engine. We process lit pixels using data for 2013. We use the

table light band of sensor F14, which discards ephemeral events, such

s fires, but remains sensitive to persistent lighting, including from gas

ares or volcanoes. Since India has no active volcanoes or gas flares on

and ( Elvidge et al., 1999 ), it is safe to assume that highly lit pixels in

ndia indicate builtup activity. 

There are well-known limitations to DMSP-OLS data. These include

aturation effects, in which the amplification of light detection to

apture low levels of light leads to right censoring in detection in

ighly-lit areas (e.g., city centers); and blooming effects, in which

eflection causes light emitted in one pixel to be detected in nearby

ixels, making highly lit areas appear to be larger than they are.

looming occurs due to several idiosyncratic features of the DMSP-OLS

ensor: (1) Field of view variation, where the satellite’s round field of

iew morphs into an elliptical and larger shape as it scans east and west

f nadir; (2) geolocation errors, whereby the satellite miscalculates a

ixel’s location, so on each night not only is there a differently sized

llipse, but its centroid is shocked in a random compass direction

 Abrahams et al., 2018 ); and (3) on-board data management, where

he 1970s technology on board the satellites causes top-censoring of

nputs. The highest possible DN is 63, and because of this saturation, it

s often impossible to differentiate between medium-density cities and

igh-density cities. 3 In our setting, saturation is not an issue because we

easure the extent of markets through lower bounds of light intensity.

owever, blooming is problematic, as we demonstrate below. 

Nightlight-based markets: A nightlight-based market is a cluster of

ontiguous, or near contiguous pixels, with a DN that exceeds a specified

hreshold. 

To operationalize this definition of a market based on nightlight

ata, three choices are required: (1) The minimum number of pixels

hat constitute a market; (2) the parameter values that govern “near

ontiguity ”; and (3) the minimum DN to be used. As mentioned, the

MSP-OLS sensor has a 1 km resolution. We set the minimum number

f pixels to form a market at 1 pixel. 4 

To determine the minimum DN thresholds for our market definition,

e examine the distribution of DNs across pixels in India for 2013 in

ig. A1. Because light is not detected in large expanses of the coun-

ry —including bodies of water, farmland, deserts, forests, and villages

ith no electricity —the DN is zero (i.e., no detectable light) for the pixel

t the 50 th percentile of the distribution. The DN is moderately higher

t a value of 5 at the 63 rd percentile, and rises sharply as one moves into

he upper tail, reaching 17.4 at the 95 th percentile, 49 at the 99 th per-

entile, and 60 at the 99 . 5 th percentile; only a tiny fraction of pixels are

ight censored at the maximum DN of 63. 5 Motivated by these patterns,
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2

e set the following alternative DN thresholds for a pixel to be highly lit:

7.4 ( 95 th percentile), 33 ( 98 th percentile), and 60 ( 99 . 5 th percentile). 

We designate as a market a cluster of contiguous highly lit pixels,

hich may consist of only a single pixel. Many clusters of highly lit

ixels lie in close proximity to each other, creating chains of light

slands that appear when we map our results. By the strict definition

bove, we would treat each island, or polygon of pixels, as a separate

arket, whereas in truth clusters of proximate polygons may share

ense commercial and commuting ties (as in the case of U.S. counties

hat comprise commuting zones; e.g., Tolbert and Sizer, 1996 ). Mo-

ivated by the method in Rozenfeld et al. (2011) for agglomerating

eighboring administrative units into larger units, we combine any

air of highly lit clusters for which the minimum distance between

heir boundaries is less than 1 km, 2 km, 4 km, or 8 km. 6 For a given

hreshold, larger buffers nest smaller buffers: 1 km markets ⊆ 2 km

arkets ⊆ 4 km markets ⊆ 8 km markets. 

.2. Detecting markets from high-resolution daytime imagery 

Daytime imagery offers alternative data to detect human activity

rom space. The major challenge in working with daytime imagery

s that one needs a classifier to convert the spectral signature of an

mage into a categorization of landcover. In recent years, there has

een substantial progress in remote sensing to improve the precision

f classification algorithms at scale. Use of daytime imagery is also

acilitated by cloud-based computing engines, such as Google Earth

ngine, which hosts the full library of Landsat, MODIS, Sentinel, and

ther satellite imagery. 

We use the MODIS dataset as our benchmark source of landcover

lassification from daytime imagery. MODIS uses a supervised machine

earning method, which takes advantage of a global database of training

ites extracted from high-resolution imagery that contain 36 spectral

ands. We use the University of Maryland classification scheme version

CD12Q1 V006, which has a resolution of 500 m ( Friedl and Sulla-

enashe, 2015 ). We use data from 2013 and take the take the Urban

nd Builtup pixels (classification 13) to indicate builtup landcover.

ODIS is publicly available on Google Earth Engine and widely used

n the remote sensing literature (e.g., Huang et al., 2016, Mertes et al.,

015, Guo et al., 2015 ). 7 

We also examine two other landcover datasets as a robustness

heck against MODIS. The Global Human Settlements Layer (GHSL,

esaresi et al., 2015 ) combines satellite data from Global Land Sur-

eys datasets (GLS1975, GLS1990, GLS2000), Landsat 8, and other

ources —–including Open Street Maps, WorldPop and MODIS —–to
ow; for example, the satellite registers no pixels with a DN equal to 1 in the 

ear 2000. Tuttle et al. (2014) develop a mapping of DNs to wattage by plac- 

ng portable high-pressure sodium lamps at uninhabited sites in Colorado and 

ew Mexico to check the DN recorded by the F16 and F18 sensors. They find 

hat ninety-three 100 watt incandescent lamps could be detected (DN = 1) at 

oth fine (0.6 km) and coarse (2.7 km) resolutions. Eight times as many bulbs 

ould saturate (DN = 63) the sensor at the fine resolution but not at the coarser 

esolution. 
6 We view a 0 km buffer as extreme as it does not account for commuting or 

rade linkages and therefore do not consider this buffer choice for our analysis. 

e use the Aggregate Polygons function in ArcGis to cluster the pixels. Online 

ppendix A explains the procedure to aggregate pixels to markets. 
7 MODIS (MCD12Q1 V006) classifies global land cover types at yearly in- 

ervals from 2001 to 2016. There are six versions of MODIS. The most recent 

ersion, Collection 6, improves over previous versions by implementing a hi- 

rarchical classification approach, using a RandomForest classifier instead of a 

4.5 decision tree, increasing the number of sites in the training data by 47% 

nd updating sites that have changed their land use (about 31% of sites), im- 

roving the feature set that now includes phenology metrics, and using Markov 

hain stabilization. Additionally, we found that this version was slightly better 

t capturing urban land cover changes in time than its previous version. See the 

CD12Q1 V006 user manual for details. 
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etermine builtup pixels at a 38 m spatial resolution. 8 We use their

Builtup Confidence Grid ”, which aggregates builtup data in 2014 and

lassifies pixels as builtup if the confidence of being builtup is greater

han 50%. GHSL contains landcover maps from an earlier period but

as less frequent temporal variation than MODIS. Although publicly

vailable, the GHSL is difficult to access, uses data beyond raw satellite

ands, and is less widely used. The third map of builtup landcover

or India in 2013 is created using the methodology in Goldblatt et al.

2018) . This layer, to which we refer as MIX, uses DMSP-OLS nightlight

ata as quasi-ground truth and daytime satellite imagery as inputs to

rain a classifier for builtup land cover in India. Appendix B summarizes

heir method for producing this layer. 

Our motivation for using multiple layers of builtup landcover

omes from rapid advances in remote sensing for classifying land use

rom satellite imagery. The accuracy with which existing layers detect

hanges in urban landcover, rather than just cross-sectional features, is

 subject of on-going research (e.g., see Mertes et al., 2015, Song et al.,

016 ). We anticipate more advances will be made in land-use classifica-

ion in the near future, such that none of the existing layers may become

he standard source for builtup landcover. In light of this uncertainty,

e use three different layers, which allows us to assess the strengths

nd weaknesses of alternative approaches to detecting urban activity.

ur method would easily extend to new layers of builtup landcover. 

Using the three layers that classify builtup landcover —MODIS,

HSL, and MIX —we adopt the following definition for markets for

aytime satellite imagery. 

Landcover-based markets: A landcover-based market is a cluster

f contiguous or near contiguous pixels whose spectral features in daytime

atellite imagery indicate that the majority of their land area consists of

uiltup landcover. 

For MODIS markets, we impose a minimum number of pixels for a

arket to be 1 (0.25 km 

2 ). For GHSL and MIX, the minimum number

f pixels is set to 40 (0.04 km 

2 and 0.03 km 

2 , respectively). Choosing a

inimum pixel size of 1 for GHSL and MIX would be extreme given the

ranularity of these data (and would be computationally cumbersome);

he choice of 40 leverages the granularity of the data to detect small clus-

ers of pixels while not creating markets so small that they would rarely

isplay well-defined internal trade or self-contained commuting pat-

erns. Clusters of builtup pixels are aggregated in a manner analogous to

hat described above (e.g., if two clusters of MODIS pixels are separated

y, say, 1.5 km of non-builtup pixels, they would form two distinct mar-

ets under the 1 km buffer and a single market under the 2 km buffer).

.3. Visual inspection of market definitions 

To obtain a visual sense of the shape of urban markets identified

y daytime versus nightlight data sources under the four buffers, we

lot the markets detected around three cities of different sizes: Delhi

19 million, 2011 Census population), Ahmedabad (5.5 million), and

jmer (0.5 million) in Figs. 1–3 . We overlay road networks from

penStreetMaps in 2018 to provide a sense of how transportation

etworks may influence the shape of markets. Panels (a) to (d), in the

rst row, display results for MODIS-based markets, while panels (e) to

t), in the second through fifth rows, display results for nightlight-based

arkets. We include nightlight markets formed using a DN threshold

f 10 to understand better the consequences of varying light intensity

hresholds but we do not analyze DN10 markets in subsequent sections.

Consider first nightlight-based markets. Together, we have 16

lternative nightlight-based market definitions. The maps illustrate

ow changing the DN threshold and buffer sizes affects market shape.

t a DN of 10 (fifth row), Delhi is an immense blob that swallows cities
8 The USGS Landsat 7 satellite, launched in 1999, contains seven spectral 

ands at a spatial resolution of 30 m and a temporal frequency of 16 days. Land- 

at 8, launched in 2013, contains nine spectral bands with a spatial resolution 

f 30 m at a temporal frequency of 16 days. 
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Fig. 1. Delhi, alternative market definitions. Notes: The figure displays markets around New Delhi for alternative distance buffers. Row 1 displays landcover-based 

markets using the MODIS layer. Row 2–5 displays nightlight-based markets. 
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cross three states in India, including Meerut (1.3 million, in Uttar

radesh), Rohtak (0.4 million, in Haryana) and Bhiwadi (0.1 million, in

ajasthan). The blob itself is 145,336 km 

2 , which is close to the size of

he U.S. state of Iowa. At a higher DN of 17.4 (fourth row), Delhi takes

he shape of a more conventional urban market, but again swallows
he city of Meerut (1.3 million), which is 75 km northeast of central

elhi. At a DN of 60 (second row), by contrast, Meerut appears as a

eparate market from Delhi. But this threshold fails to detect the small

ity of Hapur (0.2 million). Moreover, the satellite cities of Gurgaon

0.9 million) and Noida (0.6 million), two vibrant areas of economic
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Fig. 2. Ahmedabad, alternative market definitions. Notes: The figure displays markets around Ahmedabad for alternative distance buffers. Row 1 displays landcover- 

based markets using the MODIS layer. Row 2–5 displays nightlight-based markets. 
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ctivity in Delhi, are fused together with central Delhi to form one

arge market. Fig. 2 for Ahmedabad shows a similar pattern: A high

hreshold separates the main city from its largest satellite (Nadiad, 0.2

illion), but fails to detect many smaller cities; lowering the threshold

auses the size of Ahmedabad to explode. Fig. 3 shows the smaller
ity of Ajmer in the state of Rajasthan. The road leading out of Ajmer

owards the Northeast is part of the Golden Quadrilateral. At lower

N thresholds, activity appears to coalesce along the artery. This is

roblematic as these lights are likely capturing lights along the road

ather than stable clusters of economic activity. 
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Fig. 3. Ajmer, alternative market definitions. Notes: The figure displays markets around Ajmer for alternative distance buffers. Row 1 displays landcover-based 

markets using the MODIS layer. Row 2–5 displays nightlight-based markets. 

 

F  

t  

b  

s  

s  

s  

b  

m  

r  
To consider landcover-based markets, examine the top rows of

igs. 1–3 , which show markets using the MODIS layer. In stark contrast

o the nightlight-based definition in the bottom four rows, landcover-

ased markets are jagged in shape and display large variation in the

patial density of economic activity. Also, landcover-based markets
how that within the outer envelope of the market area there are

ubstantial numbers of white pixel islands, indicating areas that are not

uiltup. Whereas the blooming effect creates the perception that inside

arket boundaries all pixels contain light-emitting structures, higher-

esolution imagery indicates that cities contain many clusters of pixels
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Fig. 4. Disconnection index. Notes: Figure reports a non-parametric plot between a market’s disconnection index, measured in kilometers, and its area. 
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9 The computational burden of computing the disconnection index is very high 

since it is an average of all bilateral pixels within a market. We therefore only 

compute this index for the two nightlight-based markets and for MODIS markets. 
hat have not been builtup (e.g., undeveloped land, water, and parks).

or example, the Yamuna river in Northeast Delhi is visible in the

andcover-based figures but masked through the blooming of lights in

he nightlight-based markets. The presence of undeveloped pixels within

ities in the top row and absence in the lower rows (which are especially

pparent in Figs. 1 and 2 for the larger cities of Delhi and Ahmedabad

nd would appear for the smaller city of Ajmer were we to zoom in) in-

icates that nightlight-based markets tend to make urbanization inside

arket boundaries appear to be overly smooth. Notice also that within

elhi, we observe many distinct neighborhoods that are fused together

n nightlight-based markets. At higher distance buffers, the small

istinct markets within cities fuse together while remote towns remain

isible. 

Visual inspection illustrates the tradeoff in varying the DN threshold

o detect markets using nightlights. A strict DN threshold captures the

ost economically developed urban centers of India. But this threshold

isses smaller cities and towns. In attempting to capture these towns

hrough a lower DN threshold, the large cities mushroom in size and

wallow neighboring satellite cities. Lower thresholds also start to

apture activity along roads which are likely emitted by street lights

nd (or) the blooming effects from towns. Landcover-based markets

etected through high-resolution daytime imagery are not subject to

his tradeoff. We observe distinct pockets of activity within cities and

etect smaller towns located at the periphery; increasing the buffer

uses together markets within cities while preserving the shape of

he smaller cities. Statistics reported in the next section reinforce the

escriptive results from this visual inspection. 

. Market characteristics and validation 

This section explores the characteristics of nightlight- and landcover-

ased markets based solely on the properties of the satellite data. We

hen validate that these markets do indeed capture economic activ-

ty, by incorporating data from the Indian Census and open source

latforms. 
.1. Market characteristics 

We document the following market characteristics. First, while

ightlight-based markets capture the largest cities in India, daytime

magery detect an order of magnitude more markets that, on average,

re much smaller in size, are less compact, and have lower nightlight

ntensities. Second, landcover-based markets capture remote pock-

ts of economic activity, as well as sub-centers within larger urban

etropolises. Third, the distribution of landcover-based markets follow

 power law that more closely matches Zipf’s law than the distribution

f nightlight-based markets. 

.1.1. Market shape 

Harari (2017) finds that the geometry of Indian cities affects

conomic outcomes. Her analysis uses a novel geography-based

dentification strategy that predicts the compactness of cities, where

ompactness is measured by how close a city’s shape resembles a perfect

ircle. She determines the extent of cities using a procedure analogous to

ur nightlight-based markets, and finds that less compact Indian cities

ave higher commuting costs and lower economic welfare for residents.

s shown above, visual inspection suggests that nightlights will produce

oundaries that are overly smooth relative to the jagged boundaries of

andcover-based markets. If shape determines the welfare of residents,

s her study finds, measuring it accurately is important. Her primary

easure of urban shape is the disconnection index , based on Angel et al.

2010) , which is the average distance between all pairs of interior points

ithin a market. In the absence of actual commuting data, the index

erves as a proxy for the average commute length within a market. 

Fig. 4 plots the disconnection index, measured in kilometers, for

N33, DN60 and MODIS markets against market size. 9 For nightlight

arkets, the disconnection index does not increase with area size. This
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Fig. 5. Builtup land. Notes: Figure reports the fraction of builtup land area by buffer. The nonparametric curve for MODIS markets displays 5%/95% confidence 

interval. 
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uggests that the shape of nightlight markets does not fundamentally

hange with the overall expanse of a market. Increasing market size, by

efinition, will increase the bilateral distances between some interior

oints. But the finding that the overall index does not change implies

hat the market is including builtup pixels in close proximity with other

uiltup pixels. Thus, the overall compactness appears to be invariant

o total market land area. In contrast, the shape of MODIS markets

hanges starkly with overall market size. As the market land area

ncreases, the disconnection index increases linearly, which reveals that

arger MODIS markets are much less compact compared to both smaller

ODIS markets and to all nightlight-based markets. For example, the

isconnection index of a 100 km 

2 MODIS market, buffered at 1 km, is

.1 km compared to 3.4 km and 0.8 km for DN33 and DN60 markets,

espectively. The figure also reveals that disconnectedness increases

ore sharply for higher buffered markets. These patterns reinforce the

isual perception that landcover markets are more jagged and irregular,

nd therefore more disconnected, than nightlight markets. 

.1.2. Number of markets 

We next explore the number of markets detected through the

lternative market definitions. For context, Table A1 reports the official

umber of enumerations, at various levels of aggregation, according

o the 2011 Census. The Census recognizes 6171 “towns ”, which are
or the same reason, we do not compute the index for 8 km-buffered markets. 

arari (2017) normalizes her disconnection index by the average distance be- 

ween points in a circle that has equivalent area of a given market. We report 

he disconnection index without normalization, as it is more straightforward to 

nterpret and instead report how the index changes with market size. Addition- 

lly, whereas nightlight-based markets consist largely of continuous expanses of 

it pixels, MODIS markets contain many undeveloped areas within their outer 

nvelope. It is thus instructive to compare average distances between points 

ithin a market without normalizing, since the normalization factor for, say a 

 km buffer, would be vastly different for MODIS and nightlight markets. 

n  

t  

m  

c

t

p
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u

ome to India’s 377 million urban residents (31% of India’s total

opulation). 10 Of the 6171 towns, 468 are considered “Class1 ” cities

ith more than 100,000 inhabitants; these are the largest cities in India,

hich collectively contain 22% of India’s population. There are 1,847

lass 1, 2 and 3 towns —localities with at least 20,000 inhabitants. 

The top panel of Table 1 reports the number of markets detected

hrough nighttime lights. By construction, the number of markets de-

reases as we raise either the distance buffer for joining pixel clusters or

he DN threshold for designating highly lit pixels. At a buffer of 1 km, we

bserve 3275 DN17.4 markets, 1669 DN33 markets, and 469 DN60 mar-

ets. The two higher DN thresholds exhibit little variation in the number

f markets across buffers. Comparing Table 1 and Table A1, we see that

N17.4 markets at a 1 km buffer roughly match the number of officially

ecognized Indian cities and towns with more than 10,000 residents. The

N60 markets accurately capture Class 1 towns, which corroborates the

nding in Harari (2017) that nighttime satellite imagery are well-suited

or tracking variation in urban form across India’s largest cities. 

The bottom panel of Table 1 reports the number of markets detected

rom daytime imagery. While the numbers vary across the three daytime

atellite layers, the total number of markets detected is substantially

arger than the number of nightlight-based markets. For the MODIS

ayer, the number of markets ranges from 12,953 at distance buffer

f 1 km to 3073 at a distance buffer of 8 km. For the GHSL layer, the

umber of urban markets ranges from 12,953 at distance buffer of 1 km

o 3073 at a distance buffer of 8 km. The corresponding numbers of

arkets for the MIX layer are 17,304 and 3,417, respectively. 11 At a
10 These towns satisfy one of two criteria: (1) a place with a municipality, 

orporation, cantonment board, or notified town area committee; or (2) a place 

hat has a minimum of 5000 inhabitants, at least 75 percent of the male working 

opulation engaged in non-agricultural pursuits, and a population density of at 

east 400 people per km 

2 . 
11 The GHSL and MIX layers detect more distinct markets in part because the 

nderlying resolution of these data are finer than MODIS. We are unsure of the 
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Table 1 

Market statistics. 

Market Number Avg area (km 

2 ) Population share Urban population share 

Panel A: Nightlight-based markets 

DN17.4 

1 km 3,275 48.6 32.6% 104.6% 

2 km 3,275 50.7 32.6% 104.6% 

4 km 3,146 59.6 32.7% 105.0% 

8 km 2,752 97.8 33.5% 107.6% 

DN33 

1 km 1,669 39.0 23.4% 75.3% 

2 km 1,640 39.8 23.4% 75.3% 

4 km 1,544 42.9 23.5% 75.5% 

8 km 1,322 55.4 23.8% 76.5% 

DN60 

1 km 469 37.0 14.8% 47.6% 

2 km 465 37.3 14.8% 47.6% 

4 km 455 38.3 14.8% 47.6% 

8 km 421 43.7 14.9% 47.7% 

Panel B: Landcover-based markets 

MODIS 

1 km 12,953 3.0 29.0% 93.2% 

2 km 10,836 4.2 29.2% 93.8% 

4 km 6,921 10.6 30.1% 96.7% 

8 km 3,073 63.4 34.6% 111.1% 

GHSL 

1 km 26,202 1.4 33.3% 106.9% 

2 km 18,753 2.9 33.5% 107.6% 

4 km 10,371 10.9 34.8% 111.8% 

8 km 3,861 77.5 39.4% 126.5% 

MIX1 

1 km 17,304 1.9 27.1% 87.1% 

2 km 11,816 4.3 27.3% 87.7% 

4 km 7,225 12.1 28.4% 91.1% 

8 km 3,417 54.5 31.4% 100.7% 

Notes: Table reports the number and average area (in square kilometers) of markets and share 

of total India population, by definition. Total 2011 India population is 1,210,854,977. Urban 

population (population that resides in Census ”Towns ”) is 377,106,125. 
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12 The right shift of the distribution of land area for nightlight-based markets 
istance buffer of 4 km or less, the total numbers of landcover-based

arkets are much larger than the number of towns in India with a

opulation of 10,000 inhabitants or greater. 

.1.3. Land area 

Column 2 of Table 1 reports the average land area for each market

efinition. Consider nightlight-based markets, first. For DN17.4, the

verage size ranges from 48.6 km 

2 at a 1 km buffer to 97.8 km 

2 for

 distance buffer of 8 km . These values fall, respectively, to 37.0 km 

2 

nd 43.7 km 

2 for DN60 markets. These statistics reinforce the tradeoff

n choosing a light intensity threshold: lower thresholds detect more

arkets but the average market size increases. For landcover-based

arkets, the average market sizes are much smaller. At a 1 km buffer,

ODIS markets are 3.0 km 

2 , while the average size of GHSL and

IX markets are 1.4 km 

2 and 1.9 km 

2 , respectively. The smaller

izes of landcover markets are a result both of the granularity of the

aytime imagery and the exclusion of non-builtup land area (e.g., due

o blooming), which we explore in more detail in Section 4 . At a 4 km

uffer, the sizes of MODIS, GHSL and MIX landcover-based markets

ise to 10.6 km 

2 , 10.9 km 

2 , and 12.1 km 

2 . 

To further illustrate the tradeoffs in forming markets with nightlight

ata, it is useful to compare maximum market sizes. The maximum

rea of MODIS markets at a 1 km buffer is 1582 km 

2 . By contrast, the

aximum sizes of nightlight-based markets at a 1 km buffer changes

ubstantially across the DN17.4, DN33, and DN60 thresholds: from
recise explanation for why the number of GHSL-based markets is so high. Un- 

ike MODIS and MIX, GHSL combines raw daytime spectral bands with MODIS 

nd data from open-sourced platforms, which makes this layer quite different 

rom the other two. 

i

r

r

s

d

s

977 km 

2 for DN17.4 to 4681 km 

2 for DN30 and to 2223 km 

2 for

N60. To see this further, consider Figs. A3 and A4, which plot the

istribution of market area and average nightlight values within market

oundaries, respectively. Fig. A3 reveals that landcover-based markets

re able to capture the full range of market sizes. The mode of each

istribution effectively reveals the minimum number of pixels used to

efine a market. 12 Fig. A4 illustrates that nightlight-based markets, by

onstruction, are left censored at their respective DN thresholds. Note

hat because of buffering these markets do capture pixels below their

espective thresholds, which is most apparent at the 8 km buffer. By

ontrast, at all buffers, landcover-based markets capture pixels that

pan the entire range of DNs. In particular, these markets capture areas

n India with average DNs well below 10. 

These comparisons highlight the tradeoff in forming markets from

ightlight data. As one lowers the DN threshold to detect smaller mar-

ets, the area of larger markets expands dramatically. This tradeoff is

ot present in the construction of landcover-based markets. Landcover-

ased markets, because they are not subject to a blooming, span a

elatively wide range of land areas and intensities of economic activity

as captured by nightlight intensity per unit of land in these markets). 
s most pronounced at a buffer of 1 km, because at this buffer only the high- 

esolution daytime imagery is able to isolate small urban markets. While the 

ight shift of market-size distributions for the lower-resolution imagery is pre- 

erved at higher distance buffers, the relative “peakiness ” of the market-size 

istribution for landcover-based markets diminishes at higher buffers because 

maller market areas are joined into larger pixel clusters at these buffers. 
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Fig. 6. Land area-rank relationship. Notes: The {b, N, R-squared} are reported for the regression: log(rank-0.5) = constant + b ∗ log(area) + error. 
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13 See Jean et al. (2016) for a recent application that predicts micro-spatial 

poverty headcount for five countries in Africa using nighttime and daytime im- 

agery and Demographic and Health Surveys. 
.1.4. Power law of market area 

Economists have long been interested in the size distribution of

ities. The standard approach in the literature is to gather population

ata using census counts for cities in a particular country and to regress

he log of city population on the log city population rank. Zipf’s Law

olds if the slope of the regression is − 1. Testing for Zipf’s Law requires

onfronting the thorny issues of which data sources to use, how to

ssess the quality of these sources and the accuracy of their implied

ethods for designating administrative boundaries, and whether to

runcate the distribution so as to focus on the properties of the upper

ail ( Gabaix and Ioannides, 2004 ). The motivation for the algorithmic

pproach developed by Rozenfeld et al. (2011) is to construct the

xtent of urban markets without having to rely on seemingly arbitrary

oundaries, and then to test for the presence of Zipf’s Law using cities

hose boundaries are justified based on economic fundamentals (i.e.,

he proximity of their internal clusters of activity). In that paper, they

how that the distribution of city land areas approximately obeys Zipf’s

aw for the US and the UK, and explain that a Zipf’s law in area can be

ationalized by a model with Cobb-Douglas preferences for goods and

ousing along with a proportional random growth process. 

To connect our results with the literature, we examine the emer-

ence of a power law in the distribution of land areas for our market

efinitions. Our aim is a narrow one, to compare regularities regarding

he size distribution of land area across our market definitions and those

ased on conventional data sources, rather than to inquire into the

rigins of power laws more broadly. Following Gabaix and Ibragimov

2011) , Fig. 6 plots the log of market rank minus 0.5, based on land

rea, against the log of land area. The figure reveals three patterns.

irst, landcover-based markets more closely follow the log-linear

elationship dictated by a power law. The R 

2 of the regressions for

andcover-based markets (which range from 0.90 to 0.98) are higher

han for nightlight-based markets (which range from 0.84 to 0.91). For

ODIS 1 km markets, the R 

2 is 0.96. That is, for landcover markets

he entire distribution of market size appears to be Pareto, whereas for

ightlight markets the size distribution appears to be Pareto only in
he upper tail. Second, the figure also reveals that for nightlight-based

arkets the shape of the area-rank plot is roughly stable across buffers.

his suggests that increasing buffers simply increases the size of markets

roportionally, such that the rank-area relationship remains constant.

n contrast, the linear slopes of the area-rank plots for landcover-based

arkets flatten out as the buffer size increases, indicating greater

ispersion. Finally, Fig. 6 also reveals that for nightlight-based markets,

he log-linear relationship breaks down for the largest markets. For

andcover-based markets, however, the curve that fits the upper tail

arkets is close to linearity (as it is in the remainder of the distribution).

or the MODIS 1 km markets, the slope of the line is −0 . 93 . 

.2. Validation 

The statistics presented above summarize the extensive margins of

rban activity and are based solely on satellite data. A limitation of

atellite-inferred markets is that they convey uncertain information

n the intensive margin of economic activity. This limitation may be

ess of a concern with nightlight-based markets, since earlier work

emonstrates a strong positive relationship between nightlight intensity

nd GDP, both in levels and in changes (e.g., Henderson et al., 2012 ).

aytime satellite imagery, in contrast, provide unknown information

n the intensity of economic activity within markets. This is because

n the landcover layers the pixels record only whether or not a man-

ade impervious structure is present. One would need additional

nformation, such as the density and height of structures, to improve

he prediction of economic activity based on the underlying spectral

ignatures of those images. 13 

This subsection matches external datasets to the boundaries of

arkets to explore correlations between market area and different

easures of economic activity. Since we are confident in measuring
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Fig. 7. Population versus land area. Notes: Figures report the relationship between market size, population and population density. Markets are buffered at 1 km. 

Population from 2011 Census. 
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he land area of a market, the strength of these correlations provides

n indication of whether land area is also a reasonable proxy for

he intensity of economic activity of cities. We examine correlations

etween market area, population, nightlight intensity per unit of

and, and three granular measures of infrastructure provision —–roads,

ailway stations, and mobile phone towers. 

.2.1. Population 

Our first approach to measure economic activity within our market

oundaries is to overlay the 2011 India Census to obtain population

ounts for each market. 14 Census shape files are disaggregated at the

own and village level, which have an average area of 16.6 km 

2 and

.8 km 

2 , respectively (see Table A1). Analogous to Davis et al. (2019) ,

e overlay our markets with the Census towns and villages shape files

o spatially match each town to the market it lies inside or overlaps.

he population of each town is then assigned to the market it overlaps.

f a market overlaps more than one town, the population of all the

owns it overlaps is assigned to that market. If a town overlaps more

han one market, we divide the population of the town by the number

f markets it overlaps, and assign this value to each market it overlaps.

his ensures that we are not double counting the population of towns

hat overlap more than one market. 

The third column of Table 1 reports the total population contained

n the markets we detect. According to our estimates, the DN60 mar-

ets, which as shown above find the Census’ Class 1 towns, collectively

ontain 14.8% of India’s population and 47.6% of the urban population.

his is lower than the official Class 1 total since DN60 markets identify

he core urban area of cities (the DN60 markets are smaller, on average,

han the average size of Class 1 towns). The DN33 markets contain

3.4% and 75.3% of India’s total and urban populations, respectively. 
14 An early version of this paper used WorldPop, a publicly available source of 

ridded population data. These data contain measurement errors but are nev- 

rtheless useful because of their global coverage. These figures are available in 

arlier versions of the paper and are available upon request. 

3

 

(  

o  

(  
Compared to these two DN thresholds, landcover markets capture

 larger share of India’s urban population. The 1 km MODIS markets

ontain 29.0% and 93.2% of the total and urban population. Total

rban population share rises to 93.8%, 96.7%, and 111.1% for 2 km,

 km and 8 km markets. Thus, we find that landcover markets are able

o capture the vast majority of India’s urban population. The 8 km

ODIS markets also capture some of India’s population that do not

eside in Census’ towns, which is why the share is above 100%. 

The left axis of Fig. 7 examines the correlation between population

nd area for 1 km buffered markets. For each market definition, there is

 strong positive correlation between the area of the market and its total

opulation. This validates that the larger markets we detect are not

imply capturing pixels that appear builtup but contain no population.

nstead, larger markets contain more people, as we would expect. A sec-

nd message of the graph is that the population variance across smaller

andcover-based markets can be large. This again reflects the fact that

istinct landcover based-markets can be found in both remote areas and

arge metropolises. (This variance decreases, but the positive correlation

emains, at higher buffered 4 km markets, as illustrated in Fig. A5). We

lso examine population density, defined as population divided by land

rea, as a measure of economic activity on the right axis. The figure

eveals a fairly constant density across size for each market definition.

owever, the figure does show higher variation in population density

or smaller landcover markets for reasons just explained. 

While the builtup pixels from daytime imagery undoubtedly contain

an-made structures that do not necessarily contain human settlements

e.g., roads, freeway overpasses, dams, and power grids), the Census

ata serve as an important validation that the markets we identify do

ndeed contain urban populations within their boundaries. 

.2.2. Nightlight intensity 

Previous work by Henderson et al. (2012) and Henderson et al.

2018) demonstrate that nightlight intensity is a good proxy for national

r regional GDP. Inspired by this work, we compare the average DN

nightlight intensity per unit of land) across markets. While the average
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Fig. 8. Average DN intensity versus land area. Notes: Figures report the relationship between market size and average light intensity. Markets are buffered at 1 km. 
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15 We use the OpenStreetMaps road classifications. The major roads (511x) in- 

clude motorways, freeways, and trunk, primary, secondary and tertiary roads. 

We additionally include two minor road classifications: smaller local roads 

(5121) and roads in residential areas (5112). For the railway stations, we in- 

clude large rail stations (5601) and smaller, local rail stations or subway stations 

(5602). 
N for nightlight-based markets would be affected by blooming because

f its impact on the extent of market boundaries, blooming is less of

n issue for landcover-based markets since those boundaries are more

ccurately delineated. 

Fig. 8 reports the relationship between the average DN and the

and area of a market (1 km buffers). For each of the landcover-based

arkets, larger markets are associated with higher DNs. Moreover,

he change in DNs across market size is quite sharp. For example, a

ODIS market at the 10th percentile of the area distribution has a

ean nightlight intensity of 9.4 compared to a value of 27.2 at the

0th percentile. Henderson et al. (2012) report an elasticity of 0.3 for

DP with respect to DN, which implies that there is a GDP difference

f 56.8% between markets that span the interdecile range of land area.

The figure also reveals that landcover-based markets exhibit more

ariance in DN intensity at smaller market sizes. For instance, for the

mallest MODIS markets, we observe the full range of mean DNs (as

een by examining the range of points spanned along the y -axis for given

oints just to the right of the origin along the x -axis). This regularity is

gain a result of the fact that we detect small-in-area landcover-based

arkets both in remote regions of the country, where economic inten-

ity is low (as indicated by low DNs), and within large urban centers,

here DNs are high. This suggests that when using DN intensity as a

roxy for the economic activity of landcover-based markets, researchers

ay want to account for the characteristics of the surrounding markets.

The correlations in Fig. 8 thus suggest that the pooling of daytime

nd nightlight imagery may be a powerful means of characterizing

he combined extensive and intensive margins of urban markets. While

esearchers interested in the economic geography of specific cities may

ant to bring information from external datasets, these correlations are

romising for researchers interested in studying urban market activity

t national or global scales. 

.2.3. Proximity to infrastructure 

A third way to examine whether our markets capture economic

ctivity is to merge them with open-source data containing the locations
f key infrastructure markers. We examine proximity of markets to

aved roads, railway stations, and mobile phone towers. A caveat with

his exercise is that these data reflect the current location of infrastruc-

ure. The road and railway station data are from OpenStreetMaps. 15 

ecause the road data are for a time period roughly five years after our

atellite imagery was collected, there is measurement error in matching

arkets to roads. Rail stations are less susceptible to this problem since

hey are built at much lower frequencies. The tower locations share

he same caveat as the roads data, but have the advantage of being

ompiled by a different data source ( https://opencellid.org ). 

We construct the distance between market centroids to the nearest

nfrastructure type for each market definition in Table 2 . For nightlight-

ased 1 km markets, the fractions of DN17.4, DN33 and DN60 markets

hat lie within two kilometers of a paved road are 96.7%, 97.0% and

7.4%, respectively. This fact should not be surprising since these

arkets are relatively large, although one caveat is that the nightlight

ata may capture street lights along the roads. 

The more informative statistics are the fractions of landcover-based

 km markets that lie within two kilometers of a paved road. For MODIS

arket, this fraction is 88.3% (the corresponding numbers for GHSL and

IX markets are 89.4% and 90.8%). Since we believe that most urban

arkets would be connected to a road of some kind, this regularity

rovides validation that the daytime satellite imagery are capturing

arkets that contain economic activity. The table also reports prox-

mity to the nearest railway station (second panel) and mobile towers

third panel). 

We find that 26.2% of MODIS 1 km markets are within 5 km of a

ailway station, which rises to 81.7% for markets within 25 km of a

https://opencellid.org
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Table 2 

Market distances to nearest infrastructure. 

Market Road 

1 km 2 km 5 km 10 km 25 km 50 km 

DN17.4 91.9% 96.7% 98.2% 98.6% 98.7% 98.7% 

DN33 93.2% 97.0% 98.6% 99.0% 99.0% 99.0% 

DN60 94.7% 97.4% 98.7% 98.9% 98.9% 98.9% 

MODIS 75.1% 88.3% 97.3% 99.1% 99.3% 99.3% 

GHSL 81.3% 89.4% 97.1% 99.0% 99.2% 99.2% 

MIX 81.0% 90.8% 97.8% 99.1% 99.3% 99.3% 

Rail station 

DN17.4 12.2% 28.5% 43.1% 55.0% 83.4% 97.3% 

DN33 19.2% 42.7% 60.8% 70.1% 89.2% 98.6% 

DN60 22.0% 52.9% 78.7% 88.1% 97.0% 99.1% 

MODIS 4.6% 12.8% 26.2% 46.2% 81.7% 96.8% 

GHSL 5.1% 9.1% 22.5% 45.2% 82.1% 96.9% 

MIX 6.1% 11.3% 26.7% 50.0% 83.6% 97.3% 

Mobile phone towers 

DN17.4 59.7% 61.6% 64.4% 67.6% 69.9% 70.0% 

DN33 96.6% 97.7% 99.0% 99.7% 100.0% 100.0% 

DN60 98.9% 99.4% 99.8% 100.0% 100.0% 100.0% 

MODIS 56.1% 68.2% 86.9% 96.8% 99.9% 100.0% 

GHSL 55.3% 67.8% 86.8% 97.0% 99.9% 100.0% 

MIX 59.6% 72.2% 89.6% 97.8% 99.9% 100.0% 

Notes: Table reports the fraction of markets in which the centroid lies 

within a particular distance of the noted infrastructure type. 
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ail station. Proximity to mobile phone towers is also very high across

arkets: 86.9% of MODIS 1 km markets are within five kilometers of

 mobile tower. 

We also expect a positive relationship between market size and

ts proximity to paved roads ( Storeygard, 2016 ). The left axis of

ig. 9 plots this relationship, which illustrates the potential power of

aytime imagery over nighttime imagery. Landcover-based markets
ig. 9. Land area, average DN and proximity to roads. Notes: Distance to road is the s

oad data obtained from OpenStreetMaps. Markets are buffered at 1 km. Figure show
xhibit a sharp negative elasticity of market area with respect to

istance to the nearest road. For instance, compared to markets that

re bisected by a road, a MODIS market that is 2 km away from a road

s about 50% smaller in land area. Such a large difference in size is not

etectable using nightlight-based markets: for markets based on DN

hresholds, the elasticity of size with respect to distance to a road is an

mprecisely estimated zero. 

Fig. 9 repeats the plots with average nightlight intensity on the

econd y -axis. These illustrate that for landcover-based markets, light

ntensity, which as discussed above is a proxy for the intensity of

conomic activity, falls sharply with distance to a paved road. For

ODIS markets, the average light value falls from about 20 to 8 when

ne compares a market that lies on top of a road to a market that is

 km from a road. As with land area, a decline in light intensity is not

etectable for nightlight-based markets between 0–2 km from a road. 

As noted earlier, nightlight data have a relatively coarse spatial

esolution compared to daytime images (1 km vs 30 m). The lights

ata are also subject to blooming which introduces measurement error

n market size. Which of these two differences —spatial resolution or

xposure to blooming —explains why the road-distance elasticities are

ess sharply negative for nightlight-based markets when compared to

andcover-based markets? We examine this question in the MODIS data

y changing the minimum cluster threshold from 1 pixel to 4 pixels, or

oughly 1 km grid cells, in order to match the minimum market area of

ightlight-based markets. We then rebuild the landcover-based markets

sing a 1 km buffer. The procedure creates 5527 markets (compared to

2953 using a minimum of one MODIS pixels at 1 km buffer). We then

ompare the elasticity of market area and average DN value to distance

rom the closest road in Appendix Fig. A6. The MODIS markets that

mpose a 1 km minimum area still display a strong negative elasticity

ith respect to road distance for both outcomes. With landcover-based

arkets and nightlight-based markets now approximately equal in

patial resolution, the more negative road-distance elasticity for the

ormer relative to the latter would appear to be the result of blooming
hortest distance from market centroid to a primary, secondary or tertiary road. 

s 5% and 95% confidence intervals. 
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Fig. 10. MODIS Landcover-based markets within New Delhi metro area. Notes: Map shows MODIS markets in the New Delhi metropolitan area. The black outline 

is the official administrative boundary of New Delhi from the 2011 Census. Within the administrative boundary, there are 579 1 km, 435 2 km, 205 4 km and 60 

8 km markets. 
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n nightlights and the measurement error it introduces when trying to

etect market size. 

. Markets within super-markets 

The literature has long recognized that actual structure of cities does

ot easily map into static spatial models with a featureless geography.

nstead, urban sprawl occurs unevenly at city boundaries ( Duranton

nd Puga, 2014 ). As cities expand, there often remains undeveloped

and within city limits. This may be due to physical constraints imposed

y geography ( Harari, 2017 ), leapfrogging that occurs from dynamic

ity growth ( Fujita, 1982 ), municipalities wanting to control how

and is utilized, or, particularly relevant to India, disputes over land

itles and coordination failures across government agencies ( Roy,

009 ). These features have led to a large literature on the polycentric

tructure of cities ( Duranton and Puga, 2015 ). We next explore this

olycentricity. 

.1. Properties of super-markets 

Our market definitions have a recursive property that nests smaller

uffered markets within larger buffered “super-markets ”. This feature

llows us to study the distribution of markets within super-markets.

ur results suggest a potential use of high-resolution daytime satellite
magery to evaluate policies that impact the intra-regional distribution

f markets within these larger urban forms. The granularity allows us to

bserve impacts both within markets (e.g., markets or neighborhoods

ithin a larger super-market), and at high temporal frequencies (im-

ortant for policymakers loathe to wait years to evaluate the returns to

ublic infrastructure investments). 

To see that landcover-based markets have the potential to uncover

ocal-level responses to shocks that would otherwise appear hidden by

he coarseness and granularity of nightlight-based markets, consider

ig. 10 , which maps MODIS landcover-based markets at different

uffers for New Delhi. The outer ring is the official administrative

oundary of New Delhi. The light gray polygon represents the 60 8 km

uffered markets that lie within the administrative boundary. These

 km super-markets further contain smaller 4 km, 2 km and 1 km

arkets. Within the official boundary, we detect 205, 435 and 579

arkets buffered at 4 km, 2 km, and 1 km. 

Turning to the country as a whole, Table 3 reports the average

umber of 𝑖 = {1 , 2 , 4} km markets that are contained within their larger

uper-market buffer 𝑗 = {2 , 4 , 8} km for all markets in India. While the

egacity of New Delhi unsurprisingly stands out for its large number

f markets, the presence of these markets is a general phenomenon

etectable via landcover-based market definitions. For example, an

verage of 1.9 buffered MODIS 1 km markets lie within super-markets

efined at a 4 km buffer, and an average of 4.2 markets lie within 8 km

uper-markets. The second column within each panel of Table 3 reports
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Table 3 

Markets withinsuper-markets. 

Market 2 km Super-market 4 km Super-market 8 km Super-market 

Number Elasticity Distance Number Elasticity Distance Number Elasticity Distance 

MODIS 

1 km 1.2 0.15% 1.9 1.9 0.31% 6.2 4.2 0.36% 52.1 

2 km 1.6 0.23% 5.0 3.5 0.32% 50.4 

4 km 2.3 0.24% 38.1 

GHSL 

1 km 1.4 0.19% 5.1 2.5 0.28% 20.8 6.8 0.32% 75.4 

2 km 1.8 0.20% 13.5 4.9 0.28% 66.3 

4 km 2.7 0.22% 45.0 

MIX 

1 km 1.5 0.17% 3.9 2.4 0.25% 11.1 5.1 0.30% 31.6 

2 km 1.6 0.17% 7.2 3.5 0.25% 27.9 

4 km 2.1 0.18% 20.0 

Notes: Table reports statistics for the 2 km, 4 km and 8 km super-markets. Columns 1, 4 and 7 are the average 

number of sub-markets within the super-market. Column 2, 5 and 8 is the average distance between sub-markets. 

Column 3, 6 and 9 is the elasticity of the number of sub-markets to the size of the super-market (e.g., a one percent 

increase in the size of the super-market increases the number of markets by the number reported in the cell). Blank 

cells indicate that the statistic is not relevant (e.g., a blank cell for the number of 2 km markets within the 2 km 

or 4 km super-market). 
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Table 4 

Distribution ofmarket size within super-markets. 

2km Super-market 

Number of markets 

Rank 1 2 3 4 5 6 + 

1 100% 73% 66% 64% 61% 58% 

2 27% 22% 19% 16% 12% 

3 12% 11% 11% 7% 

4 6% 7% 5% 

5 4% 4% 

6 + 14% 

4 km Super-market 

Number of markets 

Rank 1 2 3 4 5 6 + 

1 100% 72% 62% 56% 51% 44% 

2 28% 24% 22% 20% 11% 

3 14% 13% 14% 6% 

4 9% 10% 5% 

5 6% 4% 

6 + 30% 

8 km Super-market 

Number of markets 

Rank 1 2 3 4 5 6 + 

1 100% 74% 64% 58% 58% 38% 

2 26% 23% 20% 18% 11% 

3 13% 13% 11% 6% 

4 9% 8% 5% 

5 5% 4% 

6 + 37% 

Notes: Table reports the distribution of area share of MODIS 1km markets within 

2 km, 4 km and 8 km super-markets. For example, in the first panel, for 2 km 

super-markets that contain three MODIS 1km markets, the largest market ac- 

counts for 67% of the markets’ area, the second largest market for 22%, and 

the smallest market accounts for 12% of area. Numbers may not sum to one 

because of rounding. 

s  

o

4

 

he elasticity of the number of markets to the size of the super-market.

he elasticity of the number of 1 km MODIS markets with respect to

he size of 2 km markets is 0.15 and increases to 0.31 and 0.36 for

 km and 8 km super-markets, respectively. These patterns suggests

hat there is substantial scope for using landcover-based markets to

valuate theories of how polycentric cities are organized and grow.

arkets defined according to administrative boundaries would likely

e poorly suited for this purpose as official boundary definitions may

ubstantially lag urban structure. 

The size of markets within super-markets is highly unequal. Table 4

eports the distribution of 1 km market size shares within the super-

arkets for MODIS. For each 1 km market, we rank them within

heir respective super-market and compute their share of builtup

rea. The top panel reports the distribution of shares within 2 km

uper-markets; the middle and bottom panels reports statistics for

 km and 8 km super-markets, respectively. The table reveals that for

 km super-markets that contain two 1 km markets, the larger market

ccounts for about 72% of the builtup area. For super-markets that

ontain 5 markets, the largest market accounts for 51% of the builtup

rea of 4 km super-markets, and 58% of the builtup area of 8 km

uper-markets. 

While super-markets contain many distinct markets, they also

ontain vast tracts of unbuilt land. To demonstrate this regularity,

e compute the area of builtup pixels that lie within the boundary.

ig. 5 plots a non-parametric relationship for the developed land

raction against the size of markets, by buffer. For the 1 km and 2 km

uffers, a large fraction of market area is builtup for both nightlight and

ODIS markets. This is intuitive since the clustering algorithm builds

ery small land bridges for these buffers. For larger buffers, the fraction

f land area increases with area for nightlight markets. However, for

ODIS markets, the builtup area percentage falls with area size; it

evels off at around 50% for 4 km markets, and falls continuously

n 8 km markets. The fraction of builtup land area in the average

 km buffered DN33 and DN60 market is 78% and 87%, respectively,

ompared to just 23% in the average 8 km MODIS market. 

These patterns reinforce several messages from earlier figures. The

looming of lights implies that larger buffered nightlight-based markets

ill suggest that human activity is too expansive within its boundaries.

his is particularly an issue for the largest cities. Landcover-based

arkets instead reveal far more undeveloped land within boundaries.

or large cities, daytime imagery reveal a sizable fraction of unde-

eloped land within market boundaries. This suggests there may be

m  
ubstantial within-market variation in builtup land across regions and

ver time. 

.2. Application to market access 

How might we deploy data on landcover-based markets and super-

arkets? One application is to detect the consequences of infrastructure
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evelopment. Governments across the developing world are making

arge-scale investments in improving internal transport connectivity. A

rowing literature studies the economic impacts of transportation (e.g,

ee Redding and Turner, 2015 ). Ghani et al. (2014) , for instance, use

cross-district variation in the distance to the India’s Golden Quadrilat-

ral highways and find positive impacts on allocative efficiency within

ndian manufacturing. Asher and Novosad (2019) study India’s $40

illion in expenditures on rural roads and do not find substantial effects

n rural household welfare. Both analyses draw upon administrative

atasets to evaluate impacts of new roads. Satellite imagery offers the

otential to complement these studies by using remotely sensed data

nd by analyzing impacts on markets that lie within, for instance, larger

uffered peri-urban areas. 

In the spirit of such analysis, we examine the average distances to

the centroids of) other markets within given super-markets, which are

eported in third column of each panel in Table 3 . Consider MODIS

arkets. Within a 8 km buffer, the average distance between 1 km

ub-markets is 52.1 km, indicating that the typical 8 km buffered

uper-market is an economic region unto itself, which would utilize

ighways and railways in a manner that we may typically associate with

nter-urban transport. The average distance between 1 km sub-markets

ithin a 4 km buffer is 6.2 km, which indicates that at a 4 km buffer

e are dealing with collections of interconnected neighborhoods. The

ontrast in market distances between 4 km and 8 km buffered super-

arkets illustrates the different market concepts that these designations

epresent. One might reasonably conclude that 4 km buffered markets

pproximately constitute commuting zones, while 8 km buffered

arkets approximately constitute economic regions that support dense

nternal trade in goods and services. Differing urban market definitions

ay then be useful for evaluating the consequences of reduced travel

ime on different aspects of economic integration, for goods markets

t higher distance buffers and for local labor markets at lower distance

uffers. 
t

ig. 11. Share of market access within super-markets. Notes: Figure reports the av

ifferent values of 𝜃. 
To investigate such potential, we follow Donaldson and Hornbeck

2016) by calculating measures of market access for the MODIS

arkets. For each market i , we calculate its market access as 

𝐴 𝑖 = 

∑

𝑗 ∈𝑆 𝑖𝑘 ,𝑗 ≠𝑖 

𝑎𝑟𝑒𝑎 𝑗 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝜃
𝑖𝑗 

+ 

∑

𝑗 ∉𝑆 𝑖𝑘 ,𝑗 ≠𝑖 

𝑎𝑟𝑒𝑎 𝑗 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝜃
𝑖𝑗 

(1)

here area j is the land area of market j, distance ij is the great circle dis-

ance from market i to market j , and 𝜃 is a distance elasticity that we set

o 1.4 ( Redding and Turner, 2015 ). We exclude the own market in the

ummation, as Donaldson and Hornbeck (2016) do in their analysis. We

re particularly interested in the contribution to market i ’s term by the j

arkets that lie within i ’s super-market S ik , buffered at 𝑘 = {2 , 4 , 8} km.

ig. 11 reports the contribution of the within-super-market compo-

ent, across buffers and daytime imagery sources. We also report

he results that obtain for other distance elasticities by setting 𝜃 = 1
nd 𝜃 = 1 . 8 . 

In the baseline case of 𝜃 = 1 . 4 , the results indicate that, on average,

.3%, 6.8% and 25.4% of a 1 km MODIS market’s access comes from

ther markets within the same super-market buffer of 2 km, 4 km, and

 km, respectively. At the higher elasticity of 𝜃 = 1 . 8 , the corresponding

ercentages increase to 5.2%, 14.4% and 40.1%. Whereas previous

iterature largely conceives of infrastructure development as integrating

ur equivalent of super-markets, examining landcover-based markets

eveals that a substantial share of a location’s market access is intra-

rban in nature. With data on combined infrastructure investments

n inter-state highways, such as India’s Golden Quadrilateral, and in

ntra-urban investments in access roads, road widening, and related

mprovements, daytime satellite imagery have the potential to provide

 much higher resolution characterization of how these changes in

rade costs shape the spatial distribution of economic activity. 
erage share of market access accounted by markets within super-markets for 
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. Conclusion 

Economists have been utilizing satellite imagery for over a decade.

otable applications have elucidated the dimensions of urban sprawl

nd the connection between GDP growth and the intensity of light

mitted at night. In the last several years, the landscape, so to speak,

as begun to change rapidly. Dramatic reductions in storage costs

ave made vast troves of high-resolution daytime satellite imagery

idely available, while advances in machine learning are making it

ossible to deploy imagery to detect economic outcomes at previously

nimaginable spatial resolutions. 

Our results indicate the value of combining different types of

atellite imagery in economic analysis. Daytime imagery is well suited

or defining the spatial expanse of markets, the polycentricity of urban

reas, and the gaps in urban development that exist even within

ensely populated cities. Nighttime imagery, in turn, is well suited for

easuring the intensive margin of economic activity within urban ares.

The creation of new methods for integrating alternative sources

f satellite imagery is a promising avenue for research.With existing

nalytical tools, these data will make it possible to evaluate the poten-

ially highly spatially heterogeneous economic impacts of investments

n infrastructure and other policy interventions. With the continents

f Asia and Africa in the midst of a multi-trillion dollar infrastructure

nvestments, the arrival of such capabilities is well timed. 

Although satellite imagery greatly expands the supply of data

menable to economic analysis, their interpretation is, at this stage,

till constrained by the supply of conventionally measured economic

uantities, which serve as ground truth in machine learning. Demand

ill be particularly high for methods to validate satellite-based mea-

ures of economic activity using additional sources of micro data. We

iew this as an important area for future work. 

upplementary materials 

Supplementary material associated with this article can be found,

n the online version, at doi: 10.1016/j.jue.2019.05.004 . 
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